These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1222 related items for PubMed ID: 22236478

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly sensitive plasmonic platforms for intracellular SERS sensing and imaging.
    Potara M, Boca S, Licarete E, Damert A, Alupei MC, Chiriac MT, Popescu O, Schmidt U, Astilean S.
    Nanoscale; 2013 Jul 07; 5(13):6013-22. PubMed ID: 23715524
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M, Tokman N, Culha M.
    Chemphyschem; 2008 Apr 21; 9(6):902-10. PubMed ID: 18366038
    [Abstract] [Full Text] [Related]

  • 9. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M, Brolo AG.
    Phys Chem Chem Phys; 2009 Sep 14; 11(34):7381-9. PubMed ID: 19690709
    [Abstract] [Full Text] [Related]

  • 10. An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering.
    Li J, Fang Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr 14; 66(4-5):994-1000. PubMed ID: 16875867
    [Abstract] [Full Text] [Related]

  • 11. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D, Walworth MJ, Sepaniak MJ.
    Appl Spectrosc; 2009 May 14; 63(5):571-8. PubMed ID: 19470216
    [Abstract] [Full Text] [Related]

  • 12. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C, Song Y, Wei G, Zhang W, Li Z, Dong WF.
    J Colloid Interface Sci; 2008 Jan 01; 317(1):183-90. PubMed ID: 17931640
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Using a photochemical method and chitosan to prepare surface-enhanced Raman scattering-active silver nanoparticles.
    Yang KH, Chang CM.
    Anal Chim Acta; 2012 Jun 04; 729():1-6. PubMed ID: 22595427
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L, Sun Y, Xu F, Zhang Y, Yang T, Guo C, Liu Z, Li Z.
    Nanotechnology; 2009 Mar 25; 20(12):125502. PubMed ID: 19420468
    [Abstract] [Full Text] [Related]

  • 17. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH, Li D, Simon GP, Garnier G.
    Langmuir; 2012 Jun 12; 28(23):8782-90. PubMed ID: 22594710
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 62.