These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
350 related items for PubMed ID: 22239286
1. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. Meher BR, Wang Y. J Phys Chem B; 2012 Feb 16; 116(6):1884-900. PubMed ID: 22239286 [Abstract] [Full Text] [Related]
4. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR, Wang Y. J Mol Graph Model; 2015 Mar 16; 56():60-73. PubMed ID: 25562662 [Abstract] [Full Text] [Related]
6. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P, Lipowsky R, Knecht V. J Phys Chem B; 2013 May 16; 117(19):5793-805. PubMed ID: 23614718 [Abstract] [Full Text] [Related]
7. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor. Hu G, Ma A, Dou X, Zhao L, Wang J. Int J Mol Sci; 2016 May 27; 17(6):. PubMed ID: 27240358 [Abstract] [Full Text] [Related]
9. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG. J Phys Chem B; 2014 Aug 14; 118(32):9538-52. PubMed ID: 25036111 [Abstract] [Full Text] [Related]
14. Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. Kovalevsky AY, Liu F, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT. J Mol Biol; 2006 Oct 13; 363(1):161-73. PubMed ID: 16962136 [Abstract] [Full Text] [Related]
15. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang YF, Leshchenko S, Ghosh AK, Harrison RW, Weber IT. J Med Chem; 2006 Feb 23; 49(4):1379-87. PubMed ID: 16480273 [Abstract] [Full Text] [Related]
16. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG. Eur J Med Chem; 2010 Jan 23; 45(1):227-35. PubMed ID: 19910081 [Abstract] [Full Text] [Related]
17. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses. Wang RG, Zhang HX, Zheng QC. Phys Chem Chem Phys; 2020 Feb 26; 22(8):4464-4480. PubMed ID: 32057044 [Abstract] [Full Text] [Related]
18. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. Karnati KR, Wang Y. J Mol Graph Model; 2019 Nov 26; 92():112-122. PubMed ID: 31351319 [Abstract] [Full Text] [Related]
19. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Yu Y, Wang J, Shao Q, Shi J, Zhu W. Sci Rep; 2015 May 27; 5():10517. PubMed ID: 26012849 [Abstract] [Full Text] [Related]
20. Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Purohit R, Sethumadhavan R. Interdiscip Sci; 2009 Dec 27; 1(4):320-8. PubMed ID: 20640812 [Abstract] [Full Text] [Related] Page: [Next] [New Search]