These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 22239987

  • 1. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI, La Piana G, Lofrumento NE.
    Arch Biochem Biophys; 2012 Feb 15; 518(2):157-63. PubMed ID: 22239987
    [Abstract] [Full Text] [Related]

  • 2. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J, Davis EJ.
    Biochim Biophys Acta; 1975 Mar 20; 376(3):387-97. PubMed ID: 164904
    [Abstract] [Full Text] [Related]

  • 3. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L, Bremer J, Davis EJ.
    J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472
    [Abstract] [Full Text] [Related]

  • 4. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D, La Piana G, Cafagno L, Fransvea E, Lofrumento NE.
    Arch Biochem Biophys; 1995 May 10; 319(1):36-48. PubMed ID: 7771804
    [Abstract] [Full Text] [Related]

  • 5. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN, Phillips JW, Gregory RB, Grivell AR, Wallace PG.
    Biochim Biophys Acta; 1992 Sep 09; 1136(3):223-30. PubMed ID: 1520699
    [Abstract] [Full Text] [Related]

  • 6. Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic NADH/cytochrome c oxidation and apoptosis.
    Lofrumento DD, La Piana G, Abbrescia DI, Palmitessa V, La Pesa V, Marzulli D, Lofrumento NE.
    Apoptosis; 2011 Oct 09; 16(10):1004-13. PubMed ID: 21739274
    [Abstract] [Full Text] [Related]

  • 7. Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport pathway-Effect of SH reagents.
    Lofrumento DD, La Piana G, Palmitessa V, Abbrescia DI, Lofrumento NE.
    Int J Biochem Cell Biol; 2016 Jul 09; 76():12-8. PubMed ID: 27129925
    [Abstract] [Full Text] [Related]

  • 8. Oxidation of reduced cytosolic nicotinamide adenine dinucleotide by the malate-aspartate shuttle in the K-562 human leukemia cell line.
    López-Alarcón L, Eboli ML.
    Cancer Res; 1986 Nov 09; 46(11):5589-91. PubMed ID: 3756905
    [Abstract] [Full Text] [Related]

  • 9. Ceramide-induced activation of cytosolic NADH/cytochrome c electron transport pathway: An additional source of energy for apoptosis.
    Gorgoglione V, Palmitessa V, Lofrumento DD, La Piana G, Abbrescia DI, Marzulli D, Lofrumento NE.
    Arch Biochem Biophys; 2010 Dec 15; 504(2):210-20. PubMed ID: 20850412
    [Abstract] [Full Text] [Related]

  • 10. Modulation of cytochrome c-mediated extramitochondrial NADH oxidation by contact site density.
    Marzulli D, La Piana G, Fransvea E, Lofrumento NE.
    Biochem Biophys Res Commun; 1999 Jun 07; 259(2):325-30. PubMed ID: 10362507
    [Abstract] [Full Text] [Related]

  • 11. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT, Gu L, Parrillo JE.
    J Mol Cell Cardiol; 1998 Aug 07; 30(8):1571-9. PubMed ID: 9737943
    [Abstract] [Full Text] [Related]

  • 12. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes.
    Bernardi P, Azzone GF.
    J Biol Chem; 1981 Jul 25; 256(14):7187-92. PubMed ID: 6265441
    [Abstract] [Full Text] [Related]

  • 13. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U.
    Biochem Pharmacol; 2006 Feb 14; 71(4):399-407. PubMed ID: 16368075
    [Abstract] [Full Text] [Related]

  • 14. ATP synthesis during exogenous NADH oxidation. A reappraisal.
    Bernardi P, Azzone GF.
    Biochim Biophys Acta; 1982 Jan 20; 679(1):19-27. PubMed ID: 6275889
    [Abstract] [Full Text] [Related]

  • 15. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV, Lehninger AL.
    Cancer Res; 1976 Apr 20; 36(4):1392-6. PubMed ID: 177206
    [Abstract] [Full Text] [Related]

  • 16. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R, Díaz-Muñoz M, Chagoya de Sánchez V.
    Biochim Biophys Acta; 1987 Sep 14; 930(2):254-63. PubMed ID: 2887212
    [Abstract] [Full Text] [Related]

  • 17. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT, Nose A, Agarie S, Yoshida T.
    J Exp Bot; 2008 Sep 14; 59(7):1819-27. PubMed ID: 18403382
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P, Calmettes G, Weiss JN.
    Free Radic Biol Med; 2016 Jul 14; 96():22-33. PubMed ID: 27068062
    [Abstract] [Full Text] [Related]

  • 20. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV, Lehninger AL.
    Cancer Res; 1977 Nov 14; 37(11):4173-81. PubMed ID: 198130
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.