These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


360 related items for PubMed ID: 22242925

  • 21. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA, Bell GR, Rourke JP, Sanchez AM, Elkin MD, Hickey BJ, Wilson NR.
    Small; 2011 Nov 18; 7(22):3202-10. PubMed ID: 21953833
    [Abstract] [Full Text] [Related]

  • 22. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells.
    Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH.
    Chem Commun (Camb); 2010 Aug 28; 46(32):5951-3. PubMed ID: 20601996
    [Abstract] [Full Text] [Related]

  • 23. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K, Qian K, Zhang S, Kong J, Yu C, Liu B.
    Talanta; 2011 Aug 15; 85(2):1174-9. PubMed ID: 21726755
    [Abstract] [Full Text] [Related]

  • 24. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P, Zhang H.
    ACS Nano; 2010 Jun 22; 4(6):3201-8. PubMed ID: 20441213
    [Abstract] [Full Text] [Related]

  • 25. Laser-induced direct graphene patterning and simultaneous transferring method for graphene sensor platform.
    Yoo JH, Park JB, Ahn S, Grigoropoulos CP.
    Small; 2013 Dec 20; 9(24):4269-75. PubMed ID: 23843243
    [Abstract] [Full Text] [Related]

  • 26. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors.
    Yin Z, He Q, Huang X, Zhang J, Wu S, Chen P, Lu G, Chen P, Zhang Q, Yan Q, Zhang H.
    Nanoscale; 2012 Jan 07; 4(1):293-7. PubMed ID: 22089471
    [Abstract] [Full Text] [Related]

  • 27. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres.
    Liang B, Fang L, Hu Y, Yang G, Zhu Q, Ye X.
    Nanoscale; 2014 Apr 21; 6(8):4264-74. PubMed ID: 24615460
    [Abstract] [Full Text] [Related]

  • 28. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing.
    Guo S, Wen D, Zhai Y, Dong S, Wang E.
    ACS Nano; 2010 Jul 27; 4(7):3959-68. PubMed ID: 20568706
    [Abstract] [Full Text] [Related]

  • 29. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V, Gulaboski R.
    J Phys Chem B; 2006 Feb 16; 110(6):2812-20. PubMed ID: 16471890
    [Abstract] [Full Text] [Related]

  • 30. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD, Tai NH, Chen SY, Chueh YL.
    Nanoscale; 2012 Jan 21; 4(2):632-8. PubMed ID: 22147118
    [Abstract] [Full Text] [Related]

  • 31. Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity.
    Nethravathi C, Anumol EA, Rajamathi M, Ravishankar N.
    Nanoscale; 2011 Feb 21; 3(2):569-71. PubMed ID: 21069249
    [Abstract] [Full Text] [Related]

  • 32. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH.
    Nanoscale; 2012 Oct 21; 4(20):6408-14. PubMed ID: 22952107
    [Abstract] [Full Text] [Related]

  • 33. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M, Zhai Y, Dong S.
    Anal Chem; 2009 Jul 15; 81(14):5603-13. PubMed ID: 19522529
    [Abstract] [Full Text] [Related]

  • 34. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.
    Kim J, Jeon JH, Kim HJ, Lim H, Oh IK.
    ACS Nano; 2014 Mar 25; 8(3):2986-97. PubMed ID: 24548279
    [Abstract] [Full Text] [Related]

  • 35. Fabricating process-electrochemical property correlation of laser-scribed graphene and smartphone-based electrochemical platform for portable and sensitive biosensing.
    Luo Y, Wu S, Xiang X, Shu J, Fei J.
    Biosens Bioelectron; 2023 Oct 01; 237():115525. PubMed ID: 37442032
    [Abstract] [Full Text] [Related]

  • 36. Fabrication of high-resolution, flexible, laser-induced graphene sensors via stencil masking.
    Clark KM, Nekoba DT, Viernes KL, Zhou J, Ray TR.
    Biosens Bioelectron; 2024 Nov 15; 264():116649. PubMed ID: 39137522
    [Abstract] [Full Text] [Related]

  • 37. A graphene-based electrochemical sensor for sensitive detection of paracetamol.
    Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y.
    Talanta; 2010 May 15; 81(3):754-9. PubMed ID: 20298849
    [Abstract] [Full Text] [Related]

  • 38. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.
    Lee DH, Lee JA, Lee WJ, Kim SO.
    Small; 2011 Jan 03; 7(1):95-100. PubMed ID: 21104826
    [Abstract] [Full Text] [Related]

  • 39. Nanolithography of single-layer graphene oxide films by atomic force microscopy.
    Lu G, Zhou X, Li H, Yin Z, Li B, Huang L, Boey F, Zhang H.
    Langmuir; 2010 May 04; 26(9):6164-6. PubMed ID: 20369895
    [Abstract] [Full Text] [Related]

  • 40. Printing of sub-100-nm metal nanodot arrays by carbon nanopost stamps.
    Lee SH, Cho B, Yoon S, Jeong H, Jon S, Jung GY, Cho BK, Lee T, Kim WB.
    ACS Nano; 2011 Jul 26; 5(7):5543-51. PubMed ID: 21699221
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.