These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 22246104
1. Rapid changes in corticospinal excitability during force field adaptation of human walking. Barthélemy D, Alain S, Grey MJ, Nielsen JB, Bouyer LJ. Exp Brain Res; 2012 Mar; 217(1):99-115. PubMed ID: 22246104 [Abstract] [Full Text] [Related]
2. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C. J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598 [Abstract] [Full Text] [Related]
3. Corticospinal excitability during walking in humans with absent and partial body weight support. Knikou M, Hajela N, Mummidisetty CK. Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634 [Abstract] [Full Text] [Related]
4. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K. Eur J Neurosci; 2009 Jul; 30(1):100-9. PubMed ID: 19523098 [Abstract] [Full Text] [Related]
5. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability. Bakker M, Overeem S, Snijders AH, Borm G, van Elswijk G, Toni I, Bloem BR. Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294 [Abstract] [Full Text] [Related]
6. Disruption of Locomotor Adaptation with Repetitive Transcranial Magnetic Stimulation Over the Motor Cortex. Choi JT, Bouyer LJ, Nielsen JB. Cereb Cortex; 2015 Jul; 25(7):1981-6. PubMed ID: 24532321 [Abstract] [Full Text] [Related]
7. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks. Pulverenti TS, Islam MA, Alsalman O, Murray LM, Harel NY, Knikou M. J Neurophysiol; 2019 Dec 01; 122(6):2331-2343. PubMed ID: 31577515 [Abstract] [Full Text] [Related]
8. Changes in corticospinal excitability during reach adaptation in force fields. Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol; 2013 Jan 01; 109(1):124-36. PubMed ID: 23034365 [Abstract] [Full Text] [Related]
9. Corticospinal contribution to arm muscle activity during human walking. Barthelemy D, Nielsen JB. J Physiol; 2010 Mar 15; 588(Pt 6):967-79. PubMed ID: 20123782 [Abstract] [Full Text] [Related]
10. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M. J Neurophysiol; 1999 Jan 15; 81(1):129-39. PubMed ID: 9914274 [Abstract] [Full Text] [Related]
11. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Mang CS, Lagerquist O, Collins DF. Exp Brain Res; 2010 May 15; 203(1):11-20. PubMed ID: 20217400 [Abstract] [Full Text] [Related]
12. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Clin Neurophysiol; 2016 Jan 15; 127(1):706-715. PubMed ID: 26122072 [Abstract] [Full Text] [Related]
13. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Kido Thompson A, Stein RB. Exp Brain Res; 2004 Dec 15; 159(4):491-500. PubMed ID: 15243732 [Abstract] [Full Text] [Related]
14. Changes in corticospinal excitability following adaptive modification to human walking. Zabukovec JR, Boyd LA, Linsdell MA, Lam T. Exp Brain Res; 2013 May 15; 226(4):557-64. PubMed ID: 23494384 [Abstract] [Full Text] [Related]
15. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Mileva KN, Bowtell JL, Kossev AR. Exp Physiol; 2009 Jan 15; 94(1):103-16. PubMed ID: 18658234 [Abstract] [Full Text] [Related]
16. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM, Dongés SC, Taylor JL. J Neurophysiol; 2020 May 01; 123(5):1969-1978. PubMed ID: 32292098 [Abstract] [Full Text] [Related]
17. Real-time changes in corticospinal excitability related to motor imagery of a force control task. Tatemoto T, Tsuchiya J, Numata A, Osawa R, Yamaguchi T, Tanabe S, Kondo K, Otaka Y, Sugawara K. Behav Brain Res; 2017 Sep 29; 335():185-190. PubMed ID: 28827129 [Abstract] [Full Text] [Related]
18. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. Iglesias C, Nielsen JB, Marchand-Pauvert V. Eur J Neurosci; 2008 Oct 29; 28(7):1351-61. PubMed ID: 18973562 [Abstract] [Full Text] [Related]
19. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Knash ME, Kido A, Gorassini M, Chan KM, Stein RB. Exp Brain Res; 2003 Dec 29; 153(3):366-77. PubMed ID: 14610631 [Abstract] [Full Text] [Related]
20. Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man. Christensen LO, Morita H, Petersen N, Nielsen J. Exp Brain Res; 1999 Jan 29; 124(1):59-68. PubMed ID: 9928790 [Abstract] [Full Text] [Related] Page: [Next] [New Search]