These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 2224899

  • 1. Alteration of the properties of Aspergillus sp. K-27 glucoamylase on limited proteolysis with subtilisin.
    Abe J, Nakajima K, Hizukuri S.
    Carbohydr Res; 1990 Aug 01; 203(1):129-38. PubMed ID: 2224899
    [Abstract] [Full Text] [Related]

  • 2. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and alpha-amylase.
    Abe JI, Nakajima K, Nagano H, Hizukuri S, Obata K.
    Carbohydr Res; 1988 Apr 01; 175(1):85-92. PubMed ID: 3132328
    [Abstract] [Full Text] [Related]

  • 3. Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase.
    Fukuda K, Teramoto Y, Goto M, Sakamoto J, Mitsuiki S, Hayashida S.
    Biosci Biotechnol Biochem; 1992 Apr 01; 56(4):556-9. PubMed ID: 1368209
    [Abstract] [Full Text] [Related]

  • 4. Degradation of raw starch granules by alpha-amylase purified from culture of Aspergillus awamori KT-11.
    Matsubara T, Ben Ammar Y, Anindyawati T, Yamamoto S, Ito K, Iizuka M, Minamiura N.
    J Biochem Mol Biol; 2004 Jul 31; 37(4):422-8. PubMed ID: 15469729
    [Abstract] [Full Text] [Related]

  • 5. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae.
    Goto M, Semimaru T, Furukawa K, Hayashida S.
    Appl Environ Microbiol; 1994 Nov 31; 60(11):3926-30. PubMed ID: 7993082
    [Abstract] [Full Text] [Related]

  • 6. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch.
    Goto M, Kuwano E, Kanlayakrit W, Hayashida S.
    Biosci Biotechnol Biochem; 1995 Jan 31; 59(1):16-20. PubMed ID: 7765970
    [Abstract] [Full Text] [Related]

  • 7. Molecular cloning and determination of the nucleotide sequence of raw starch digesting alpha-amylase from Aspergillus awamori KT-11.
    Matsubara T, Ben Ammar Y, Anindyawati T, Yamamoto S, Ito K, Iizuka M, Minamiura N.
    J Biochem Mol Biol; 2004 Jul 31; 37(4):429-38. PubMed ID: 15469730
    [Abstract] [Full Text] [Related]

  • 8. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity.
    Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B.
    PLoS One; 2014 Jul 31; 9(11):e113581. PubMed ID: 25415468
    [Abstract] [Full Text] [Related]

  • 9. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.
    de Moraes LM, Astolfi-Filho S, Oliver SG.
    Appl Microbiol Biotechnol; 1995 Nov 31; 43(6):1067-76. PubMed ID: 8590658
    [Abstract] [Full Text] [Related]

  • 10. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.
    Paldi T, Levy I, Shoseyov O.
    Biochem J; 2003 Jun 15; 372(Pt 3):905-10. PubMed ID: 12646045
    [Abstract] [Full Text] [Related]

  • 11. Characterization and expression in Pichia pastoris of a raw starch degrading glucoamylase (GA2) derived from Aspergillus flavus NSH9.
    Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, Hossain MA, Roslan H.
    Protein Expr Purif; 2019 Dec 15; 164():105462. PubMed ID: 31351992
    [Abstract] [Full Text] [Related]

  • 12. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.
    Coutinho PM, Reilly PJ.
    Protein Eng; 1994 Mar 15; 7(3):393-400. PubMed ID: 8177888
    [Abstract] [Full Text] [Related]

  • 13. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme.
    Dubey AK, Suresh C, Kavitha R, Karanth NG, Umesh-Kumar S.
    FEBS Lett; 2000 Apr 14; 471(2-3):251-5. PubMed ID: 10767433
    [Abstract] [Full Text] [Related]

  • 14. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering.
    Fierobe HP, Stoffer BB, Frandsen TP, Svensson B.
    Biochemistry; 1996 Jul 02; 35(26):8696-704. PubMed ID: 8679632
    [Abstract] [Full Text] [Related]

  • 15. Structure of the catalytic domain of glucoamylase from Aspergillus niger.
    Lee J, Paetzel M.
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Feb 01; 67(Pt 2):188-92. PubMed ID: 21301084
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification.
    Parashar D, Satyanarayana T.
    Int J Biol Macromol; 2017 Jun 01; 99():274-281. PubMed ID: 28238910
    [Abstract] [Full Text] [Related]

  • 19. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant).
    Ao Z, Quezada-Calvillo R, Sim L, Nichols BL, Rose DR, Sterchi EE, Hamaker BR.
    FEBS Lett; 2007 May 29; 581(13):2381-8. PubMed ID: 17485087
    [Abstract] [Full Text] [Related]

  • 20. The glucoamylase from Aspergillus wentii: Purification and characterization.
    Lago MC, Dos Santos FC, Bueno PSA, de Oliveira MAS, Barbosa-Tessmann IP.
    J Basic Microbiol; 2021 May 29; 61(5):443-458. PubMed ID: 33783000
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.