These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 22257976

  • 1. Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.
    Meunier A, Fulcrand R, Darchen F, Guille Collignon M, Lemaître F, Amatore C.
    Biophys Chem; 2012 Mar; 162():14-21. PubMed ID: 22257976
    [Abstract] [Full Text] [Related]

  • 2. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X, Gillis KD.
    Anal Chem; 2006 Apr 15; 78(8):2521-5. PubMed ID: 16615759
    [Abstract] [Full Text] [Related]

  • 3. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes.
    Wang J, Ewing AG.
    Analyst; 2014 Jul 07; 139(13):3290-5. PubMed ID: 24740449
    [Abstract] [Full Text] [Related]

  • 4. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y.
    Biosens Bioelectron; 2009 Jan 01; 24(5):1480-3. PubMed ID: 19038539
    [Abstract] [Full Text] [Related]

  • 5. [Influence of novel surface treatment of ITO anodes on the performance of OLED].
    Wang L, Zhang XQ, Lin P, Xiong DP, Huang SH.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug 01; 25(8):1207-9. PubMed ID: 16329481
    [Abstract] [Full Text] [Related]

  • 6. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P, Chase JG, Gaynor P, Oback B, Wang W.
    Lab Chip; 2014 Aug 07; 14(15):2717-27. PubMed ID: 24933556
    [Abstract] [Full Text] [Related]

  • 7. Spatio-temporal detachment of single cells using microarrayed transparent electrodes.
    Fukuda J, Kameoka Y, Suzuki H.
    Biomaterials; 2011 Oct 07; 32(28):6663-9. PubMed ID: 21665269
    [Abstract] [Full Text] [Related]

  • 8. Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles.
    Meunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M, Karatekin E, Arbault S, Guille M, Darchen F, Lemaître F, Amatore C.
    Angew Chem Int Ed Engl; 2011 May 23; 50(22):5081-4. PubMed ID: 21523868
    [No Abstract] [Full Text] [Related]

  • 9. Arsenic(III) detection using electrochemical-chemical-chemical redox cycling at bare indium-tin oxide electrodes.
    Jeong J, Das J, Choi M, Jo J, Aziz MA, Yang H.
    Analyst; 2014 Nov 21; 139(22):5813-7. PubMed ID: 25209319
    [Abstract] [Full Text] [Related]

  • 10. Exocytosis of SH-SY5Y single cell with different shapes cultured on ITO micro-pore electrode.
    Zhao H, Li L, Fan HJ, Wang F, Jiang LM, He PG, Fang YZ.
    Mol Cell Biochem; 2012 Apr 21; 363(1-2):309-13. PubMed ID: 22139348
    [Abstract] [Full Text] [Related]

  • 11. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ, Guo LH.
    Anal Chim Acta; 2009 Jan 19; 632(1):15-20. PubMed ID: 19100877
    [Abstract] [Full Text] [Related]

  • 12. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.
    Shi BX, Wang Y, Zhang K, Lam TL, Chan HL.
    Biosens Bioelectron; 2011 Feb 15; 26(6):2917-21. PubMed ID: 21185713
    [Abstract] [Full Text] [Related]

  • 13. Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes.
    Yao J, Gillis KD.
    Analyst; 2012 Jun 07; 137(11):2674-81. PubMed ID: 22540116
    [Abstract] [Full Text] [Related]

  • 14. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations.
    Maldonado S, Smith TJ, Williams RD, Morin S, Barton E, Stevenson KJ.
    Langmuir; 2006 Mar 14; 22(6):2884-91. PubMed ID: 16519499
    [Abstract] [Full Text] [Related]

  • 15. Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes.
    Chen X, Gao Y, Hossain M, Gangopadhyay S, Gillis KD.
    Lab Chip; 2008 Jan 14; 8(1):161-9. PubMed ID: 18094774
    [Abstract] [Full Text] [Related]

  • 16. Monitoring of morphology and physical properties of cultured cells using a micro camera and a quartz crystal with transparent indium tin oxide electrodes after injections of glutaraldehyde and trypsin.
    Kang HW, Ida K, Yamamoto Y, Muramatsu H.
    Anal Chim Acta; 2008 Aug 22; 624(1):154-61. PubMed ID: 18706321
    [Abstract] [Full Text] [Related]

  • 17. Vesicular exocytosis and microdevices - microelectrode arrays.
    Amatore C, Delacotte J, Guille-Collignon M, Lemaître F.
    Analyst; 2015 Jun 07; 140(11):3687-95. PubMed ID: 25803190
    [Abstract] [Full Text] [Related]

  • 18. Ultrasensitive detection of DNA in diluted serum using NaBH4 electrooxidation mediated by [Ru(NH3)6]3+ at indium-tin oxide electrodes.
    Das J, Lee JA, Yang H.
    Langmuir; 2010 May 04; 26(9):6804-8. PubMed ID: 20085331
    [Abstract] [Full Text] [Related]

  • 19. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples.
    Yang J, Strickler JR, Gunasekaran S.
    Nanoscale; 2012 Aug 07; 4(15):4594-602. PubMed ID: 22706569
    [Abstract] [Full Text] [Related]

  • 20. Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays.
    Gao C, Sun X, Gillis KD.
    Biomed Microdevices; 2013 Jun 07; 15(3):445-51. PubMed ID: 23329291
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.