These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 22260181

  • 1. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation.
    Zhang W, Crittenden J, Li K, Chen Y.
    Environ Sci Technol; 2012 Jul 03; 46(13):7054-62. PubMed ID: 22260181
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling.
    Li K, Chen Y.
    J Hazard Mater; 2012 Mar 30; 209-210():264-70. PubMed ID: 22285915
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C, Bobba AD, Attinti R, Shen C, Lazouskaya V, Wang LP, Jin Y.
    Environ Sci Technol; 2012 Jul 03; 46(13):7151-8. PubMed ID: 22642719
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions.
    Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y.
    Sci Total Environ; 2010 Jul 15; 408(16):3477-89. PubMed ID: 20421125
    [Abstract] [Full Text] [Related]

  • 8. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H, Dong YN, Zhu M, Li X, Keller AA, Wang T, Li F.
    Water Res; 2015 Sep 01; 80():130-8. PubMed ID: 26001279
    [Abstract] [Full Text] [Related]

  • 9. Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering.
    Chekli L, Zhao YX, Tijing LD, Phuntsho S, Donner E, Lombi E, Gao BY, Shon HK.
    J Hazard Mater; 2015 Mar 02; 284():190-200. PubMed ID: 25463233
    [Abstract] [Full Text] [Related]

  • 10. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y.
    Environ Sci Technol; 2011 Nov 01; 45(21):9284-92. PubMed ID: 21916459
    [Abstract] [Full Text] [Related]

  • 11. Interpreting the role of NO3-, SO42-, and extracellular polymeric substances on aggregation kinetics of CeO2 nanoparticles: Measurement and modeling.
    Song J, Xu Y, Liu C, He Q, Huang R, Jiang S, Ma J, Wu Z, Huangfu X.
    Ecotoxicol Environ Saf; 2020 May 01; 194():110456. PubMed ID: 32171963
    [Abstract] [Full Text] [Related]

  • 12. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M, Wang H, Keller AA, Wang T, Li F.
    Sci Total Environ; 2014 Jul 15; 487():375-80. PubMed ID: 24793841
    [Abstract] [Full Text] [Related]

  • 13. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL, Elimelech M.
    J Colloid Interface Sci; 2007 May 01; 309(1):126-34. PubMed ID: 17331529
    [Abstract] [Full Text] [Related]

  • 14. Effects of natural organic matter type and concentration on the aggregation of citrate-stabilized gold nanoparticles.
    Nason JA, McDowell SA, Callahan TW.
    J Environ Monit; 2012 Jul 01; 14(7):1885-92. PubMed ID: 22495395
    [Abstract] [Full Text] [Related]

  • 15. [Effect of Natural Organic Matter and Electrolytes on the Aggregation of C60 Nanoparticles in Aquatic Systems].
    Fang H, Jing J, Yu JH, Wang YT.
    Huan Jing Ke Xue; 2015 Oct 01; 36(10):3715-9. PubMed ID: 26841603
    [Abstract] [Full Text] [Related]

  • 16. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles.
    Wang Z, Quik JTK, Song L, Wouterse M, Peijnenburg WJGM.
    Environ Toxicol Chem; 2018 Apr 01; 37(4):1024-1031. PubMed ID: 29240259
    [Abstract] [Full Text] [Related]

  • 17. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.
    Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH.
    Langmuir; 2011 May 17; 27(10):6059-68. PubMed ID: 21500814
    [Abstract] [Full Text] [Related]

  • 18. Size effects on adsorption of hematite nanoparticles on E. coli cells.
    Zhang W, Rittmann B, Chen Y.
    Environ Sci Technol; 2011 Mar 15; 45(6):2172-8. PubMed ID: 21341780
    [Abstract] [Full Text] [Related]

  • 19. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G, Liu X, Su C.
    Environ Sci Technol; 2012 Jul 03; 46(13):7142-50. PubMed ID: 22681399
    [Abstract] [Full Text] [Related]

  • 20. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO2 nanoparticles in water environment.
    Wang D, Wang P, Wang C, Ao Y.
    Environ Pollut; 2019 May 03; 248():834-844. PubMed ID: 30856499
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.