These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
436 related items for PubMed ID: 22263604
1. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X. Nanotoxicology; 2013 May; 7(3):323-37. PubMed ID: 22263604 [Abstract] [Full Text] [Related]
2. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag⁺ at sublethal concentrations. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ. Environ Sci Technol; 2013 May 21; 47(10):5442-9. PubMed ID: 23631766 [Abstract] [Full Text] [Related]
3. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES. Environ Sci Technol; 2011 Mar 15; 45(6):2360-7. PubMed ID: 21341685 [Abstract] [Full Text] [Related]
4. Phytotoxic effects of silver nanoparticles in tobacco plants. Cvjetko P, Zovko M, Štefanić PP, Biba R, Tkalec M, Domijan AM, Vrček IV, Letofsky-Papst I, Šikić S, Balen B. Environ Sci Pollut Res Int; 2018 Feb 15; 25(6):5590-5602. PubMed ID: 29222658 [Abstract] [Full Text] [Related]
5. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE, Lowry GV. Environ Sci Technol; 2012 Jul 03; 46(13):6992-7000. PubMed ID: 22296331 [Abstract] [Full Text] [Related]
6. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Environ Sci Technol; 2013 Sep 17; 47(18):10637-44. PubMed ID: 23962165 [Abstract] [Full Text] [Related]
7. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. Sci Total Environ; 2014 Jan 15; 468-469():968-76. PubMed ID: 24091120 [Abstract] [Full Text] [Related]
8. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. Li L, Wu H, Peijnenburg WJ, van Gestel CA. Nanotoxicology; 2015 Jan 15; 9(6):792-801. PubMed ID: 25387252 [Abstract] [Full Text] [Related]
9. Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Kim J, Kim S, Lee S. Nanotoxicology; 2011 Jun 15; 5(2):208-14. PubMed ID: 20804438 [Abstract] [Full Text] [Related]
10. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Makama S, Piella J, Undas A, Dimmers WJ, Peters R, Puntes VF, van den Brink NW. Environ Pollut; 2016 Nov 15; 218():870-878. PubMed ID: 27524251 [Abstract] [Full Text] [Related]
11. Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. Wang L, Sun J, Lin L, Fu Y, Alenius H, Lindsey K, Chen C. Ecotoxicol Environ Saf; 2020 Mar 01; 190():110072. PubMed ID: 31864120 [Abstract] [Full Text] [Related]
12. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM, Batley GE, Jarolimek CV, Rogers NJ. Chemosphere; 2013 Sep 01; 93(2):359-65. PubMed ID: 23732009 [Abstract] [Full Text] [Related]
13. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Zhao CM, Wang WX. Nanotoxicology; 2012 Jun 01; 6(4):361-70. PubMed ID: 21591875 [Abstract] [Full Text] [Related]
14. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z. J Environ Sci (China); 2013 Sep 01; 25(9):1947-55. PubMed ID: 24520739 [Abstract] [Full Text] [Related]
15. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Zhang CL, Jiang HS, Gu SP, Zhou XH, Lu ZW, Kang XH, Yin L, Huang J. Environ Pollut; 2019 Sep 01; 252(Pt B):1539-1549. PubMed ID: 31277023 [Abstract] [Full Text] [Related]
16. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Cvjetko P, Milošić A, Domijan AM, Vinković Vrček I, Tolić S, Peharec Štefanić P, Letofsky-Papst I, Tkalec M, Balen B. Ecotoxicol Environ Saf; 2017 Mar 01; 137():18-28. PubMed ID: 27894021 [Abstract] [Full Text] [Related]
17. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Zhang H, Smith JA, Oyanedel-Craver V. Water Res; 2012 Mar 01; 46(3):691-9. PubMed ID: 22169660 [Abstract] [Full Text] [Related]
18. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Sun J, Wang L, Li S, Yin L, Huang J, Chen C. Environ Toxicol Chem; 2017 Oct 01; 36(10):2773-2780. PubMed ID: 28440569 [Abstract] [Full Text] [Related]
19. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P, Ke PC. Environ Pollut; 2013 Aug 01; 179():258-67. PubMed ID: 23702492 [Abstract] [Full Text] [Related]
20. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Kwok KW, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, Liu J, Marinakos SM, Hinton DE. Aquat Toxicol; 2012 Sep 15; 120-121():59-66. PubMed ID: 22634717 [Abstract] [Full Text] [Related] Page: [Next] [New Search]