These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 22263932
21. Survey of pesticide residues in table grapes: determination of processing factors, intake and risk assessment. Poulsen ME, Hansen HK, Sloth JJ, Christensen HB, Andersen JH. Food Addit Contam; 2007 Aug; 24(8):886-95. PubMed ID: 17613076 [Abstract] [Full Text] [Related]
22. Pesticide residues in grapes, wine, and their processing products. Cabras P, Angioni A. J Agric Food Chem; 2000 Apr; 48(4):967-73. PubMed ID: 10775335 [Abstract] [Full Text] [Related]
23. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia. Cesnik HB, Gregorcic A, Cus F. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Apr; 25(4):438-43. PubMed ID: 18348043 [Abstract] [Full Text] [Related]
24. Pesticide residues in Tunisian table grapes and associated risk for consumer's health. Bouagga A, Chaabane H, Toumi K, Mougou Hamdane A, Nasraoui B, Joly L. Food Addit Contam Part B Surveill; 2019 Jun; 12(2):135-144. PubMed ID: 30764749 [Abstract] [Full Text] [Related]
25. Monitoring of selected pesticides residue levels in water samples of paddy fields and removal of cypermethrin and chlorpyrifos residues from water using rice bran. Bhattacharjee S, Fakhruddin AN, Chowdhury MA, Rahman MA, Alam MK. Bull Environ Contam Toxicol; 2012 Aug; 89(2):348-53. PubMed ID: 22627618 [Abstract] [Full Text] [Related]
26. Processing factor for a selected group of pesticides in a wine-making process: distribution of pesticides during grape processing. Pazzirota T, Martin L, Mezcua M, Ferrer C, Fernandez-Alba AR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013 Aug; 30(10):1752-60. PubMed ID: 23875669 [Abstract] [Full Text] [Related]
27. Development of extraction procedures for the determination of imidacloprid: application to residue analysis and dynamics of two formulations in Chinese cabbage. Khay S, Abd El-Aty AM, Cho SK, Choi JH, Mamun MI, Goudah A, Shin HC, Shim JH. Biomed Chromatogr; 2008 Jun; 22(6):581-9. PubMed ID: 18205138 [Abstract] [Full Text] [Related]
28. Dissipation kinetics and consumer risk assessment of novaluron + lambda-cyhalothrin co-formulation in cabbage. Sharma KK, Tripathy V, Mohapatra S, Matadha NY, Pathan ARK, Sharma BN, Dubey JK, Katna S, George T, Tayade A, Sharma K, Gupta R, Walia S. Ecotoxicol Environ Saf; 2021 Jan 15; 208():111494. PubMed ID: 33120258 [Abstract] [Full Text] [Related]
30. Dissipation behavior of organophosphorus pesticides during the cabbage pickling process: residue changes with salt and vinegar content of pickling solution. Lu Y, Yang Z, Shen L, Liu Z, Zhou Z, Diao J. J Agric Food Chem; 2013 Mar 06; 61(9):2244-52. PubMed ID: 23402557 [Abstract] [Full Text] [Related]
32. In situ and rapid determination of acetamiprid residue on cabbage leaf using surface-enhanced Raman scattering. Pan TT, Guo W, Lu P, Hu D. J Sci Food Agric; 2021 Jul 06; 101(9):3595-3604. PubMed ID: 33275280 [Abstract] [Full Text] [Related]
37. Sulfoxaflor residues and exposure risk assessment in grape under Egyptian field conditions. Malhat F, Hegazy A, Barakat DA, Ibrahim ED, Hussien M, Saber ES, Saber AN. Environ Sci Pollut Res Int; 2024 Aug 06; 31(39):52038-52048. PubMed ID: 39136923 [Abstract] [Full Text] [Related]
38. Dissipation and residue of rotenone in cabbage and soil under field conditions. Zhou Y, Zhang N, Wang K, Li W, Li H, Zhang Z. Bull Environ Contam Toxicol; 2013 Aug 06; 91(2):251-5. PubMed ID: 23807683 [Abstract] [Full Text] [Related]