These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. [Genetic control of gliadin components in wheat Triticum spelta L]. Brezhneva TA, Upelniek VP, Pukhal'skaiĭ VA. Genetika; 2010 May; 46(5):640-4. PubMed ID: 20583599 [Abstract] [Full Text] [Related]
23. The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese Spring. Anderson OD, Huo N, Gu YQ. Funct Integr Genomics; 2013 Jun; 13(2):261-73. PubMed ID: 23564033 [Abstract] [Full Text] [Related]
25. Characterization of α/β- and γ-gliadins in commercial varieties and breeding lines of durum wheat using MALDI-TOF and A-PAGE gels. Marín S, Gil-Humanes J, Hernando A, Barro F. Biochem Genet; 2011 Dec; 49(11-12):735-47. PubMed ID: 21660455 [Abstract] [Full Text] [Related]
26. [Global diversity of durum wheat Triticum durum desf. for alleles of gliadin-coding loci]. Mel'nikova NV, Mitrofanova OP, Liapunova OA, Kudriavtsev AM. Genetika; 2010 Jan; 46(1):51-7. PubMed ID: 20198879 [Abstract] [Full Text] [Related]
27. [Genetic diversity revealed by ISSR molecular marker in common wheat, spelt, compactum and progeny of recurrent selection]. Du JK, Yao YY, Ni ZF, Peng HR, Sun QX. Yi Chuan Xue Bao; 2002 May; 29(5):445-52. PubMed ID: 12043574 [Abstract] [Full Text] [Related]
28. [Dynamics of genetic variation of Sartov cultivars of common wheat Triticum aestivum L. (from the gliadin-coding locus) after a an 80-year period of scientific selection]. Novosel'skaia-Dragovich AIu, Krupnov VA, Saĭfulin RA, Pukhal'skiĭ VA. Genetika; 2003 Oct; 39(10):1338-46. PubMed ID: 14658338 [Abstract] [Full Text] [Related]
29. Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food. Detection of wheat contamination in non-wheat food products. Allmann M, Candrian U, Höfelein C, Lüthy J. Z Lebensm Unters Forsch; 1993 Mar; 196(3):248-51. PubMed ID: 8465611 [Abstract] [Full Text] [Related]
30. Analysis of expressed sequence tags from a single wheat cultivar facilitates interpretation of tandem mass spectrometry data and discrimination of gamma gliadin proteins that may play different functional roles in flour. Altenbach SB, Vensel WH, Dupont FM. BMC Plant Biol; 2010 Jan 11; 10():7. PubMed ID: 20064259 [Abstract] [Full Text] [Related]
31. [Allelic diversity at gliadin-coding gene loci in cultivars of spring durum wheat (Triticum durum Desf.) bred in Russia and former Soviet Republics in the 20th century]. Mel'nikova NV, Kudriavtsev AM. Genetika; 2009 Oct 11; 45(10):1369-76. PubMed ID: 19947548 [Abstract] [Full Text] [Related]
32. [Alleles at storage protein loci in Triticum spelta L. accessions and their occurrence in related wheats]. Kozub NA, Boguslavskiĭ RL, Sozinov IA, Tverdokhleb EV, Ksinias IN, Blium IaB, Sozinov AA. Tsitol Genet; 2014 Oct 11; 48(1):41-51. PubMed ID: 24791472 [Abstract] [Full Text] [Related]
33. Development and optimisation of a generic micro LC-ESI-MS method for the qualitative and quantitative determination of 30-mer toxic gliadin peptides in wheat flour for food analysis. Vatansever B, Muñoz A, Klein CL, Reinert K. Anal Bioanal Chem; 2017 Feb 11; 409(4):989-997. PubMed ID: 27796452 [Abstract] [Full Text] [Related]
35. [Isolation and sequence analysis of a omega-gliadin homologous gene from wheat]. Chen FG, Xia GM. Yi Chuan; 2005 Nov 11; 27(6):941-7. PubMed ID: 16378943 [Abstract] [Full Text] [Related]
36. Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Silletti S, Morello L, Gavazzi F, Gianì S, Braglia L, Breviario D. Food Chem; 2019 Jan 15; 271():410-418. PubMed ID: 30236695 [Abstract] [Full Text] [Related]
37. [Fragment length polymorphism of Wx-B1 gene digested by BamHI and its relation to amylose content of wheat]. Wang F, Zhao H, Wang Y, Wang XZ. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun 15; 31(3):269-74. PubMed ID: 15961901 [Abstract] [Full Text] [Related]
38. Promoter DNA hypermethylation of TaGli-γ-2.1 positively regulates gluten strength in bread wheat. Zhou Z, Liu C, Qin M, Li W, Hou J, Shi X, Dai Z, Yao W, Tian B, Lei Z, Li Y, Wu Z. J Adv Res; 2022 Feb 15; 36():163-173. PubMed ID: 35127171 [Abstract] [Full Text] [Related]
39. A novel Ta.AGP.S.1b transcript in Chinese common wheat (Triticum aestivum L.). Kang GZ, Zheng BB, Shen BQ, Peng HF, Guo TC. C R Biol; 2010 Oct 15; 333(10):716-24. PubMed ID: 20965441 [Abstract] [Full Text] [Related]