These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 22265880
1. Simultaneous detection of NADH and H₂O₂ using flow injection analysis based on a bifunctional poly(thionine)-modified electrode. Baskar S, Chang JL, Zen JM. Biosens Bioelectron; 2012 Mar 15; 33(1):95-9. PubMed ID: 22265880 [Abstract] [Full Text] [Related]
2. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications. Ricci F, Amine A, Moscone D, Palleschi G. Biosens Bioelectron; 2007 Jan 15; 22(6):854-62. PubMed ID: 16621499 [Abstract] [Full Text] [Related]
3. Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Gao Q, Cui X, Yang F, Ma Y, Yang X. Biosens Bioelectron; 2003 Nov 30; 19(3):277-82. PubMed ID: 14611764 [Abstract] [Full Text] [Related]
4. Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode. Dilgin DG, Gligor D, Gökçel HI, Dursun Z, Dilgin Y. Biosens Bioelectron; 2010 Oct 15; 26(2):411-7. PubMed ID: 20739173 [Abstract] [Full Text] [Related]
5. Electrocatalytic reaction of hydrogen peroxide and NADH based on poly(neutral red) and FAD hybrid film. Lin KC, Lin YC, Chen SM. Analyst; 2012 Jan 07; 137(1):186-94. PubMed ID: 22046584 [Abstract] [Full Text] [Related]
6. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Teymourian H, Salimi A, Hallaj R. Biosens Bioelectron; 2012 Mar 15; 33(1):60-8. PubMed ID: 22230696 [Abstract] [Full Text] [Related]
7. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Ping J, Wang Y, Fan K, Wu J, Ying Y. Biosens Bioelectron; 2011 Oct 15; 28(1):204-9. PubMed ID: 21807494 [Abstract] [Full Text] [Related]
8. A novel protocol for covalent immobilization of thionine on glassy carbon electrode and its application in hydrogen peroxide biosensor. Xu X, Feng Y, Li J, Li F, Yu H. Biosens Bioelectron; 2010 Jun 15; 25(10):2324-8. PubMed ID: 20400288 [Abstract] [Full Text] [Related]
9. Amperometric hydrogen peroxide biosensor based on covalently immobilizing thionine as a mediator. Ma L, Yuan R, Chai Y, Chen S, Ling S. Bioprocess Biosyst Eng; 2009 Jun 15; 32(4):537-44. PubMed ID: 18989707 [Abstract] [Full Text] [Related]
10. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M, Zhai Y, Dong S. Anal Chem; 2009 Jul 15; 81(14):5603-13. PubMed ID: 19522529 [Abstract] [Full Text] [Related]
11. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode. Li L, Liang B, Shi J, Li F, Mascini M, Liu A. Biosens Bioelectron; 2012 Mar 15; 33(1):100-5. PubMed ID: 22251747 [Abstract] [Full Text] [Related]
12. Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on nano-Au/Thi/poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode. Gao F, Yuan R, Chai Y, Chen S, Cao S, Tang M. J Biochem Biophys Methods; 2007 Apr 10; 70(3):407-13. PubMed ID: 17081615 [Abstract] [Full Text] [Related]
13. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer. Deng L, Wang Y, Shang L, Wen D, Wang F, Dong S. Biosens Bioelectron; 2008 Dec 01; 24(4):957-63. PubMed ID: 18818067 [Abstract] [Full Text] [Related]
15. A novel biosensing mechanism based on a poly(N-butyl benzimidazole)-modified gold electrode for the detection of hydrogen peroxide. Hua MY, Chen HC, Tsai RY, Lin YC, Wang L. Anal Chim Acta; 2011 May 05; 693(1-2):114-20. PubMed ID: 21504818 [Abstract] [Full Text] [Related]
16. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Meng L, Wu P, Chen G, Cai C, Sun Y, Yuan Z. Biosens Bioelectron; 2009 Feb 15; 24(6):1751-6. PubMed ID: 18945610 [Abstract] [Full Text] [Related]
17. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Valentini F, Salis A, Curulli A, Palleschi G. Anal Chem; 2004 Jun 01; 76(11):3244-8. PubMed ID: 15167808 [Abstract] [Full Text] [Related]
18. A flow injection system, comprising a biosensor based on a screen-printed carbon electrode containing Meldola's Blue-Reinecke salt coated with glucose dehydrogenase, for the measurement of glucose. Piano M, Serban S, Biddle N, Pittson R, Drago GA, Hart JP. Anal Biochem; 2010 Jan 15; 396(2):269-74. PubMed ID: 19766585 [Abstract] [Full Text] [Related]
19. Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Yang M, Yang Y, Yang Y, Shen G, Yu R. Anal Biochem; 2004 Nov 01; 334(1):127-34. PubMed ID: 15464961 [Abstract] [Full Text] [Related]
20. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M, Shang L, Li B, Huang L, Dong S. Biosens Bioelectron; 2008 Nov 15; 24(3):442-7. PubMed ID: 18541421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]