These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tissue-Specific Downregulation of Fatty Acid Synthase Suppresses Intestinal Adenoma Formation via Coordinated Reprograming of Transcriptome and Metabolism in the Mouse Model of Apc-Driven Colorectal Cancer. Drury J, Young LEA, Scott TL, Kelson CO, He D, Liu J, Wu Y, Wang C, Weiss HL, Fan T, Gentry MS, Sun R, Zaytseva YY. Int J Mol Sci; 2022 Jun 10; 23(12):. PubMed ID: 35742953 [Abstract] [Full Text] [Related]
4. CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. Wang S, Qiu J, Liu L, Su C, Qi L, Huang C, Chen X, Zhang Y, Ye Y, Ding Y, Liang L, Liao W. J Exp Clin Cancer Res; 2020 Aug 25; 39(1):168. PubMed ID: 32843066 [Abstract] [Full Text] [Related]
5. Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Wang H, Xi Q, Wu G. Cancer Med; 2016 Jul 25; 5(7):1599-606. PubMed ID: 27139420 [Abstract] [Full Text] [Related]
6. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M. Gastroenterology; 2011 Mar 25; 140(3):1071-83. PubMed ID: 21147110 [Abstract] [Full Text] [Related]
7. Karyopherin β1 deletion suppresses tumor growth and metastasis in colorectal cancer (CRC) by reducing MET expression. Zhang Y, Li KF. Biomed Pharmacother; 2019 Dec 25; 120():109127. PubMed ID: 31629952 [Abstract] [Full Text] [Related]
8. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. Elliott VA, Rychahou P, Zaytseva YY, Evers BM. PLoS One; 2014 Dec 25; 9(5):e97432. PubMed ID: 24823486 [Abstract] [Full Text] [Related]
9. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Li L, Che L, Tharp KM, Park HM, Pilo MG, Cao D, Cigliano A, Latte G, Xu Z, Ribback S, Dombrowski F, Evert M, Gores GJ, Stahl A, Calvisi DF, Chen X. Hepatology; 2016 Jun 25; 63(6):1900-13. PubMed ID: 26910791 [Abstract] [Full Text] [Related]
10. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Che L, Pilo MG, Cigliano A, Latte G, Simile MM, Ribback S, Dombrowski F, Evert M, Chen X, Calvisi DF. Cell Cycle; 2017 Mar 19; 16(6):499-507. PubMed ID: 28118080 [Abstract] [Full Text] [Related]
11. Ellagic acid ameliorates AKT-driven hepatic steatosis in mice by suppressing de novo lipogenesis via the AKT/SREBP-1/FASN pathway. Zhang C, Hu J, Sheng L, Yuan M, Wu Y, Chen L, Wang G, Qiu Z. Food Funct; 2019 Jun 19; 10(6):3410-3420. PubMed ID: 31123744 [Abstract] [Full Text] [Related]
12. Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells. Kelson CO, Tessmann JW, Geisen ME, He D, Wang C, Gao T, Evers BM, Zaytseva YY. Cells; 2024 Oct 08; 13(19):. PubMed ID: 39404424 [Abstract] [Full Text] [Related]
13. Overexpression of fatty acid synthase in Middle Eastern epithelial ovarian carcinoma activates AKT and Its inhibition potentiates cisplatin-induced apoptosis. Uddin S, Jehan Z, Ahmed M, Alyan A, Al-Dayel F, Hussain A, Bavi P, Al-Kuraya KS. Mol Med; 2011 Oct 08; 17(7-8):635-45. PubMed ID: 21442130 [Abstract] [Full Text] [Related]
14. Blockade of fatty acid synthase induces ubiquitination and degradation of phosphoinositide-3-kinase signaling proteins in ovarian cancer. Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW. Mol Cancer Res; 2011 Dec 08; 9(12):1767-79. PubMed ID: 21970855 [Abstract] [Full Text] [Related]
15. Fatty acid synthase and AKT pathway signaling in a subset of papillary thyroid cancers. Uddin S, Siraj AK, Al-Rasheed M, Ahmed M, Bu R, Myers JN, Al-Nuaim A, Al-Sobhi S, Al-Dayel F, Bavi P, Hussain AR, Al-Kuraya KS. J Clin Endocrinol Metab; 2008 Oct 08; 93(10):4088-97. PubMed ID: 18682509 [Abstract] [Full Text] [Related]
16. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. Li J, Huang Q, Long X, Zhang J, Huang X, Aa J, Yang H, Chen Z, Xing J. J Hepatol; 2015 Dec 08; 63(6):1378-89. PubMed ID: 26282231 [Abstract] [Full Text] [Related]
17. Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. You X, Tian J, Zhang H, Guo Y, Yang J, Zhu C, Song M, Wang P, Liu Z, Cancilla J, Lu W, Glorieux C, Wen S, Du H, Huang P, Hu Y. Mol Metab; 2021 Jun 08; 48():101203. PubMed ID: 33676027 [Abstract] [Full Text] [Related]
18. Ovarian Cancer-Intrinsic Fatty Acid Synthase Prevents Anti-tumor Immunity by Disrupting Tumor-Infiltrating Dendritic Cells. Jiang L, Fang X, Wang H, Li D, Wang X. Front Immunol; 2018 Jun 08; 9():2927. PubMed ID: 30619288 [Abstract] [Full Text] [Related]
19. HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Pan S, Liu Y, Liu Q, Xiao Y, Liu B, Ren X, Qi X, Zhou H, Zeng C, Jia L. Biochim Biophys Acta Mol Cell Res; 2019 May 08; 1866(5):750-760. PubMed ID: 30742932 [Abstract] [Full Text] [Related]
20. FBXW7β loss-of-function enhances FASN-mediated lipogenesis and promotes colorectal cancer growth. Wei W, Qin B, Wen W, Zhang B, Luo H, Wang Y, Xu H, Xie X, Liu S, Jiang X, Wang M, Tang Q, Zhang J, Yang R, Fan Z, Lyu H, Lin J, Li K, Lee MH. Signal Transduct Target Ther; 2023 May 19; 8(1):187. PubMed ID: 37202390 [Abstract] [Full Text] [Related] Page: [Next] [New Search]