These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 22273516

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen.
    Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K.
    J Biosci Bioeng; 2007 Sep; 104(3):238-40. PubMed ID: 17964492
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.
    Li HF, Knutson BL, Nokes SE, Lynn BC, Flythe MD.
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768
    [Abstract] [Full Text] [Related]

  • 5. Butanol and ethanol production from tapioca starch wastewater by Clostridium spp.
    Ouephanit C, Virunanon C, Burapatana V, Chulalaksananukul W.
    Water Sci Technol; 2011 Feb; 64(9):1774-80. PubMed ID: 22020468
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.
    Thang VH, Kanda K, Kobayashi G.
    Appl Biochem Biotechnol; 2010 May; 161(1-8):157-70. PubMed ID: 19771401
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum.
    Baba S, Tashiro Y, Shinto H, Sonomoto K.
    J Biotechnol; 2012 Feb 20; 157(4):605-12. PubMed ID: 21683741
    [Abstract] [Full Text] [Related]

  • 10. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity.
    Wang S, Zhu Y, Zhang Y, Li Y.
    Appl Microbiol Biotechnol; 2012 Feb 20; 93(3):1021-30. PubMed ID: 21935591
    [Abstract] [Full Text] [Related]

  • 11. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp.
    Nancharaiah YV, Francis AJ.
    Bioresour Technol; 2011 Jun 20; 102(11):6573-8. PubMed ID: 21474305
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation.
    Qureshi N, Blaschek HP.
    Biotechnol Prog; 1999 Jun 20; 15(4):594-602. PubMed ID: 10441349
    [Abstract] [Full Text] [Related]

  • 16. Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control.
    Li SY, Srivastava R, Suib SL, Li Y, Parnas RS.
    Bioresour Technol; 2011 Mar 20; 102(5):4241-50. PubMed ID: 21227684
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Production of butanol from starch-based waste packing peanuts and agricultural waste.
    Jesse TW, Ezeji TC, Qureshi N, Blaschek HP.
    J Ind Microbiol Biotechnol; 2002 Sep 20; 29(3):117-23. PubMed ID: 12242632
    [Abstract] [Full Text] [Related]

  • 20. Redox potential control and applications in microaerobic and anaerobic fermentations.
    Liu CG, Xue C, Lin YH, Bai FW.
    Biotechnol Adv; 2013 Sep 20; 31(2):257-65. PubMed ID: 23178703
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.