These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 22274272
1. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography. Chan KK, Tang S. Opt Express; 2011 Dec 19; 19(27):26891-904. PubMed ID: 22274272 [Abstract] [Full Text] [Related]
2. Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. Vergnole S, Lévesque D, Lamouche G. Opt Express; 2010 May 10; 18(10):10446-61. PubMed ID: 20588899 [Abstract] [Full Text] [Related]
3. Rapid gridding reconstruction with a minimal oversampling ratio. Beatty PJ, Nishimura DG, Pauly JM. IEEE Trans Med Imaging; 2005 Jun 10; 24(6):799-808. PubMed ID: 15959939 [Abstract] [Full Text] [Related]
4. Homotopic, non-local sparse reconstruction of optical coherence tomography imagery. Liu C, Wong A, Bizheva K, Fieguth P, Bie H. Opt Express; 2012 Apr 23; 20(9):10200-11. PubMed ID: 22535111 [Abstract] [Full Text] [Related]
5. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography. Xu D, Huang Y, Kang JU. Opt Express; 2014 Jun 16; 22(12):14871-84. PubMed ID: 24977582 [Abstract] [Full Text] [Related]
6. Optical coherence tomography by using frequency measurements in wavelength domain. Seck HL, Zhang Y, Soh YC. Opt Express; 2011 Jan 17; 19(2):1324-34. PubMed ID: 21263673 [Abstract] [Full Text] [Related]
7. Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware. Sorensen TS, Schaeffter T, Noe KO, Hansen MS. IEEE Trans Med Imaging; 2008 Apr 17; 27(4):538-47. PubMed ID: 18390350 [Abstract] [Full Text] [Related]
8. Optimal signal processing of nonlinearity in swept-source and spectral-domain optical coherence tomography. Vergnole S, Lévesque D, Bizheva K, Lamouche G. Appl Opt; 2012 Apr 10; 51(11):1701-8. PubMed ID: 22505160 [Abstract] [Full Text] [Related]
9. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units. Watanabe Y, Maeno S, Aoshima K, Hasegawa H, Koseki H. Appl Opt; 2010 Sep 01; 49(25):4756-62. PubMed ID: 20820218 [Abstract] [Full Text] [Related]
10. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning. Wang RK. Phys Med Biol; 2007 Oct 07; 52(19):5897-907. PubMed ID: 17881807 [Abstract] [Full Text] [Related]
11. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT. Hillmann D, Bonin T, Lührs C, Franke G, Hagen-Eggert M, Koch P, Hüttmann G. Opt Express; 2012 Mar 12; 20(6):6761-76. PubMed ID: 22418560 [Abstract] [Full Text] [Related]
12. An improved gridding method for spiral MRI using nonuniform fast Fourier transform. Sha L, Guo H, Song AW. J Magn Reson; 2003 Jun 12; 162(2):250-8. PubMed ID: 12810009 [Abstract] [Full Text] [Related]
13. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units. Li J, Bloch P, Xu J, Sarunic MV, Shannon L. Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660 [Abstract] [Full Text] [Related]
14. Spatial domain filtering for fast modification of the tradeoff between image sharpness and pixel noise in computed tomography. Schaller S, Wildberger JE, Raupach R, Niethammer M, Klingenbeck-Regn K, Flohr T. IEEE Trans Med Imaging; 2003 Jul 01; 22(7):846-53. PubMed ID: 12906238 [Abstract] [Full Text] [Related]
15. Reconstruction in diffraction ultrasound tomography using nonuniform FFT. Bronstein MM, Bronstein AM, Zibulevsky M, Azhari H. IEEE Trans Med Imaging; 2002 Nov 01; 21(11):1395-401. PubMed ID: 12575876 [Abstract] [Full Text] [Related]
16. Signal processing for sidelobe suppression in optical coherence tomography images. Wang Y, Liang Y, Xu K. J Opt Soc Am A Opt Image Sci Vis; 2010 Mar 01; 27(3):415-21. PubMed ID: 20208930 [Abstract] [Full Text] [Related]
17. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. Okamura T, Gonzalo N, Gutiérrez-Chico JL, Serruys PW, Bruining N, de Winter S, Dijkstra J, Commossaris KH, van Geuns RJ, van Soest G, Ligthart J, Regar E. EuroIntervention; 2010 Aug 01; 6(3):371-9. PubMed ID: 20884417 [Abstract] [Full Text] [Related]
18. Intra-retinal layer segmentation in optical coherence tomography images. Mishra A, Wong A, Bizheva K, Clausi DA. Opt Express; 2009 Dec 21; 17(26):23719-28. PubMed ID: 20052083 [Abstract] [Full Text] [Related]
19. Iterative tomographic image reconstruction using Fourier-based forward and back-projectors. Matej S, Fessler JA, Kazantsev IG. IEEE Trans Med Imaging; 2004 Apr 21; 23(4):401-12. PubMed ID: 15084066 [Abstract] [Full Text] [Related]
20. Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT. Zhang K, Kang JU. Opt Express; 2010 Oct 25; 18(22):23472-87. PubMed ID: 21164690 [Abstract] [Full Text] [Related] Page: [Next] [New Search]