These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 22274765
1. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH. Theor Appl Genet; 2012 May; 124(7):1325-38. PubMed ID: 22274765 [Abstract] [Full Text] [Related]
2. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP. BMC Genomics; 2012 Apr 24; 13():142. PubMed ID: 22524439 [Abstract] [Full Text] [Related]
3. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. Ma XF, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R. PLoS One; 2012 Apr 24; 7(3):e33821. PubMed ID: 22439001 [Abstract] [Full Text] [Related]
4. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Zhang G, Ge C, Xu P, Wang S, Cheng S, Han Y, Wang Y, Zhuang Y, Hou X, Yu T, Xu X, Deng S, Li Q, Yang Y, Yin X, Wang W, Liu W, Zheng C, Sun X, Wang Z, Ming R, Dong S, Ma J, Zhang X, Chen C. Nat Plants; 2021 May 24; 7(5):608-618. PubMed ID: 33958777 [Abstract] [Full Text] [Related]
5. Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence. Ge C, Ai X, Jia S, Yang Y, Che L, Yi Z, Chen C. Mol Genet Genomics; 2019 Feb 24; 294(1):35-45. PubMed ID: 30159617 [Abstract] [Full Text] [Related]
6. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships. Kim C, Lee TH, Guo H, Chung SJ, Paterson AH, Kim DS, Lee GJ. BMC Plant Biol; 2014 May 18; 14():134. PubMed ID: 24884969 [Abstract] [Full Text] [Related]
7. An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Wu YQ, Huang Y. Genome; 2007 Jan 18; 50(1):84-9. PubMed ID: 17546074 [Abstract] [Full Text] [Related]
8. Nuclear SSR markers for Miscanthus, Saccharum, and related grasses (Saccharinae, Poaceae). Hodkinson TR, de Cesare M, Barth S. Appl Plant Sci; 2013 Nov 18; 1(11):. PubMed ID: 25202497 [Abstract] [Full Text] [Related]
9. Construction of methylation linkage map based on MSAP and SSR markers in Sorghum bicolor (L.). Duan Y, Qian J, Sun Y, Yi Z, Yan M. IUBMB Life; 2009 Jun 18; 61(6):663-9. PubMed ID: 19472176 [Abstract] [Full Text] [Related]
10. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR. BMC Plant Biol; 2009 Jan 26; 9():13. PubMed ID: 19171067 [Abstract] [Full Text] [Related]
12. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Kim C, Lee TH, Compton RO, Robertson JS, Pierce GJ, Paterson AH. Plant Mol Biol; 2013 Jan 26; 81(1-2):139-47. PubMed ID: 23161199 [Abstract] [Full Text] [Related]
13. Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Ramu P, Kassahun B, Senthilvel S, Ashok Kumar C, Jayashree B, Folkertsma RT, Reddy LA, Kuruvinashetti MS, Haussmann BI, Hash CT. Theor Appl Genet; 2009 Nov 26; 119(7):1193-204. PubMed ID: 19669123 [Abstract] [Full Text] [Related]
15. Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia. Clark LV, Dzyubenko E, Dzyubenko N, Bagmet L, Sabitov A, Chebukin P, Johnson DA, Kjeldsen JB, Petersen KK, Jørgensen U, Yoo JH, Heo K, Yu CY, Zhao H, Jin X, Peng J, Yamada T, Sacks EJ. Ann Bot; 2016 Oct 01; 118(5):941-955. PubMed ID: 27451985 [Abstract] [Full Text] [Related]
16. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C. BMC Plant Biol; 2003 Dec 19; 3():9. PubMed ID: 14683527 [Abstract] [Full Text] [Related]
18. Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. Tsuruta SI, Ebina M, Kobayashi M, Takahashi W. PLoS One; 2017 Dec 19; 12(1):e0169992. PubMed ID: 28125648 [Abstract] [Full Text] [Related]
19. Genetic analysis of the sugarcane (Saccharum spp.) cultivar 'LCP 85-384'. I. Linkage mapping using AFLP, SSR, and TRAP markers. Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA. Theor Appl Genet; 2011 Jun 19; 123(1):77-93. PubMed ID: 21472411 [Abstract] [Full Text] [Related]