These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 22275253
1. Optical control of focal epilepsy in vivo with caged γ-aminobutyric acid. Yang X, Rode DL, Peterka DS, Yuste R, Rothman SM. Ann Neurol; 2012 Jan; 71(1):68-75. PubMed ID: 22275253 [Abstract] [Full Text] [Related]
2. Photolysis of Caged-GABA Rapidly Terminates Seizures In Vivo: Concentration and Light Intensity Dependence. Wang D, Yu Z, Yan J, Xue F, Ren G, Jiang C, Wang W, Piao Y, Yang X. Front Neurol; 2017 Jan; 8():215. PubMed ID: 28572790 [Abstract] [Full Text] [Related]
3. Recording of Neural Activity With Modulation of Photolysis of Caged Compounds Using Microelectrode Arrays in Rats With Seizures. Gao F, Xiao G, Song Y, Wang M, Li Z, Zhang Y, Xu S, Xie J, Yin H, Cai X. IEEE Trans Biomed Eng; 2019 Nov; 66(11):3080-3087. PubMed ID: 30794501 [Abstract] [Full Text] [Related]
4. Optical suppression of experimental seizures in rat brain slices. Yang XF, Schmidt BF, Rode DL, Rothman SM. Epilepsia; 2010 Jan; 51(1):127-35. PubMed ID: 19674053 [Abstract] [Full Text] [Related]
5. Optical triggered seizures using a caged 4-Aminopyridine. Zhao M, McGarry LM, Ma H, Harris S, Berwick J, Yuste R, Schwartz TH. Front Neurosci; 2015 Jan; 9():25. PubMed ID: 25698919 [Abstract] [Full Text] [Related]
6. Optical suppression of seizure-like activity with an LED. Rothman SM, Perry G, Yang XF, Hyrc K, Schmidt BF. Epilepsy Res; 2007 May; 74(2-3):201-9. PubMed ID: 17448638 [Abstract] [Full Text] [Related]
7. Transmeningeal delivery of GABA to control neocortical seizures in rats. John JE, Baptiste SL, Sheffield LG, von Gizycki H, Kuzniecky RI, Devinsky O, Ludvig N. Epilepsy Res; 2007 Jun; 75(1):10-7. PubMed ID: 17478079 [Abstract] [Full Text] [Related]
8. Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Telfeian AE, Connors BW. Epilepsia; 1998 Jul; 39(7):700-8. PubMed ID: 9670897 [Abstract] [Full Text] [Related]
9. Photorelease of GABA with Visible Light Using an Inorganic Caging Group. Rial Verde EM, Zayat L, Etchenique R, Yuste R. Front Neural Circuits; 2008 Jul; 2():2. PubMed ID: 18946542 [Abstract] [Full Text] [Related]
10. Extracellular glutamate and GABA transients at the transition from interictal spiking to seizures. Shimoda Y, Leite M, Graham RT, Marvin JS, Hasseman J, Kolb I, Looger LL, Magloire V, Kullmann DM. Brain; 2024 Mar 01; 147(3):1011-1024. PubMed ID: 37787057 [Abstract] [Full Text] [Related]
11. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. Dai Y, Song Y, Xie J, Xiao G, Li X, Li Z, Gao F, Zhang Y, He E, Xu S, Wang Y, Zheng W, Jiang X, Qi Z, Meng D, Fan Z, Cai X. ACS Appl Mater Interfaces; 2020 Sep 16; 12(37):41148-41156. PubMed ID: 32809788 [Abstract] [Full Text] [Related]
12. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Chang M, Dian JA, Dufour S, Wang L, Moradi Chameh H, Ramani M, Zhang L, Carlen PL, Womelsdorf T, Valiante TA. Neurobiol Dis; 2018 Jan 16; 109(Pt A):102-116. PubMed ID: 29024712 [Abstract] [Full Text] [Related]
13. Hemodynamic Changes Associated with Interictal Spikes Induced by Acute Models of Focal Epilepsy in Rats: A Simultaneous Electrocorticography and Near-Infrared Spectroscopy Study. Osharina V, Aarabi A, Manoochehri M, Mahmoudzadeh M, Wallois F. Brain Topogr; 2017 May 16; 30(3):390-407. PubMed ID: 28176165 [Abstract] [Full Text] [Related]
14. Laminar properties of 4-aminopyridine-induced synchronous network activities in rat neocortex. Yang L, Benardo LS. Neuroscience; 2002 May 16; 111(2):303-13. PubMed ID: 11983316 [Abstract] [Full Text] [Related]
15. Developmental characteristics of epileptiform activity in immature rat neocortex: a comparison of four in vitro seizure models. Wong M, Yamada KA. Brain Res Dev Brain Res; 2001 Jun 29; 128(2):113-20. PubMed ID: 11412897 [Abstract] [Full Text] [Related]
16. Electrophysiological study of the effects of side products of RuBi-GABA uncaging on GABAA receptors in cerebellar granule cells. Gatta E, Bazzurro V, Angeli E, Salis A, Damonte G, Cupello A, Robello M, Diaspro A. Biomol Concepts; 2022 Jun 08; 13(1):289-297. PubMed ID: 35675587 [Abstract] [Full Text] [Related]
17. Noradrenaline mediates paradoxical effects on rat neocortical neurons after GABA withdrawal. Silva-Barrat C, Champagnat J, Leiva J, Pavlik V. J Neurophysiol; 1994 Mar 08; 71(3):1139-50. PubMed ID: 8201408 [Abstract] [Full Text] [Related]
18. On the ictogenic properties of the piriform cortex in vitro. Panuccio G, Sanchez G, Lévesque M, Salami P, de Curtis M, Avoli M. Epilepsia; 2012 Mar 08; 53(3):459-68. PubMed ID: 22372627 [Abstract] [Full Text] [Related]
19. The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Deisz RA. Neuroscience; 1999 Mar 08; 93(4):1241-9. PubMed ID: 10501448 [Abstract] [Full Text] [Related]
20. Up-regulation of P2X7 receptor-mediated inhibition of GABA uptake by nerve terminals of the human epileptic neocortex. Barros-Barbosa AR, Fonseca AL, Guerra-Gomes S, Ferreirinha F, Santos A, Rangel R, Lobo MG, Correia-de-Sá P, Cordeiro JM. Epilepsia; 2016 Jan 08; 57(1):99-110. PubMed ID: 26714441 [Abstract] [Full Text] [Related] Page: [Next] [New Search]