These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 22285780
1. Structural determinants of the specificity of a membrane binding domain of the scaffold protein Ste5 of budding yeast: implications in signaling by the scaffold protein in MAPK pathway. Bhunia A, Mohanram H, Bhattacharjya S. Biochim Biophys Acta; 2012 May; 1818(5):1250-60. PubMed ID: 22285780 [Abstract] [Full Text] [Related]
2. A membrane binding domain in the ste5 scaffold synergizes with gbetagamma binding to control localization and signaling in pheromone response. Winters MJ, Lamson RE, Nakanishi H, Neiman AM, Pryciak PM. Mol Cell; 2005 Oct 07; 20(1):21-32. PubMed ID: 16209942 [Abstract] [Full Text] [Related]
3. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Garrenton LS, Young SL, Thorner J. Genes Dev; 2006 Jul 15; 20(14):1946-58. PubMed ID: 16847350 [Abstract] [Full Text] [Related]
4. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Truckses DM, Bloomekatz JE, Thorner J. Mol Cell Biol; 2006 Feb 15; 26(3):912-28. PubMed ID: 16428446 [Abstract] [Full Text] [Related]
5. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Bhunia A, Domadia PN, Mohanram H, Bhattacharjya S. Proteins; 2009 Feb 01; 74(2):328-43. PubMed ID: 18618697 [Abstract] [Full Text] [Related]
6. Cdc24 regulates nuclear shuttling and recruitment of the Ste5 scaffold to a heterotrimeric G protein in Saccharomyces cerevisiae. Wang Y, Chen W, Simpson DM, Elion EA. J Biol Chem; 2005 Apr 01; 280(13):13084-96. PubMed ID: 15657049 [Abstract] [Full Text] [Related]
7. Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. Lamson RE, Takahashi S, Winters MJ, Pryciak PM. Curr Biol; 2006 Mar 21; 16(6):618-23. PubMed ID: 16546088 [Abstract] [Full Text] [Related]
8. Solution structures and model membrane interactions of Ctriporin, an anti-methicillin-resistant Staphylococcus aureus Peptide from Scorpion Venom. Bandyopadhyay S, Junjie RL, Lim B, Sanjeev R, Xin WY, Yee CK, Hui Melodies SM, Yow N, Sivaraman J, Chatterjee C. Biopolymers; 2014 Dec 21; 101(12):1143-53. PubMed ID: 24947608 [Abstract] [Full Text] [Related]
9. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Bhattacharyya RP, Reményi A, Good MC, Bashor CJ, Falick AM, Lim WA. Science; 2006 Feb 10; 311(5762):822-6. PubMed ID: 16424299 [Abstract] [Full Text] [Related]
10. The RING domain of the scaffold protein Ste5 adopts a molten globular character with high thermal and chemical stability. Walczak MJ, Samatanga B, van Drogen F, Peter M, Jelesarov I, Wider G. Angew Chem Int Ed Engl; 2014 Jan 27; 53(5):1320-3. PubMed ID: 24356903 [Abstract] [Full Text] [Related]
11. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Rozek A, Friedrich CL, Hancock RE. Biochemistry; 2000 Dec 26; 39(51):15765-74. PubMed ID: 11123901 [Abstract] [Full Text] [Related]
12. Control of MAPK signaling specificity by a conserved residue in the MEK-binding domain of the yeast scaffold protein Ste5. Schwartz MA, Madhani HD. Curr Genet; 2006 Jun 26; 49(6):351-63. PubMed ID: 16463042 [Abstract] [Full Text] [Related]
13. Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Garrenton LS, Braunwarth A, Irniger S, Hurt E, Künzler M, Thorner J. Mol Cell Biol; 2009 Jan 26; 29(2):582-601. PubMed ID: 19001089 [Abstract] [Full Text] [Related]
14. Negative Feedback Phosphorylation of Gγ Subunit Ste18 and the Ste5 Scaffold Synergistically Regulates MAPK Activation in Yeast. Choudhury S, Baradaran-Mashinchi P, Torres MP. Cell Rep; 2018 May 01; 23(5):1504-1515. PubMed ID: 29719261 [Abstract] [Full Text] [Related]
15. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Winters MJ, Pryciak PM. Mol Biol Cell; 2019 Apr 01; 30(8):1037-1049. PubMed ID: 30726174 [Abstract] [Full Text] [Related]
16. Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, Ramjan Z, Sharma S, Waring AJ, Yeaman MR, Booth V. Biopolymers; 2009 Jan 01; 91(1):1-13. PubMed ID: 18712851 [Abstract] [Full Text] [Related]
17. The shuttling scaffold model for prevention of yeast pheromone pathway misactivation. Singh AP, Andries E, Edwards JS, Steinberg S. Bull Math Biol; 2012 Dec 01; 74(12):2861-74. PubMed ID: 23104201 [Abstract] [Full Text] [Related]
18. A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PM. Cell; 2007 Feb 09; 128(3):519-31. PubMed ID: 17289571 [Abstract] [Full Text] [Related]
19. Micelle bound structure and DNA interaction of brevinin-2-related peptide, an antimicrobial peptide derived from frog skin. Bandyopadhyay S, Ng BY, Chong C, Lim MZ, Gill SK, Lee KH, Sivaraman J, Chatterjee C. J Pept Sci; 2014 Oct 09; 20(10):811-21. PubMed ID: 25044683 [Abstract] [Full Text] [Related]