These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 2229015

  • 1. Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria.
    Kurosawa K, Shibata H, Hayashi N, Sato N, Kamada T, Tagawa K.
    J Biochem; 1990 Jul; 108(1):9-16. PubMed ID: 2229015
    [Abstract] [Full Text] [Related]

  • 2. Kinetic studies on the removal of extracellular tert-butyl hydroperoxide by cultured fibroblasts.
    Makino N, Bannai S, Sugita Y.
    Biochim Biophys Acta; 1995 Apr 13; 1243(3):503-8. PubMed ID: 7727526
    [Abstract] [Full Text] [Related]

  • 3. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G, Martino A, Richelmi P, Moore GA, Jewell SA, Orrenius S.
    Eur J Biochem; 1984 Apr 02; 140(1):1-6. PubMed ID: 6705788
    [Abstract] [Full Text] [Related]

  • 4. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment.
    Brodie AE, Reed DJ.
    Chem Biol Interact; 1992 Sep 28; 84(2):125-32. PubMed ID: 1394620
    [Abstract] [Full Text] [Related]

  • 5. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW, Nelson J, Harrison G, Forman HJ.
    Arch Biochem Biophys; 1985 Dec 28; 243(2):325-31. PubMed ID: 3002274
    [Abstract] [Full Text] [Related]

  • 6. Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria.
    Fiskum G, Pease A.
    Cancer Res; 1986 Jul 28; 46(7):3459-63. PubMed ID: 3708577
    [Abstract] [Full Text] [Related]

  • 7. Decreased flux through pyruvate dehydrogenase by thiol oxidation during t-butyl hydroperoxide metabolism in perfused rat liver.
    Crane D, Häussinger D, Graf P, Sies H.
    Hoppe Seylers Z Physiol Chem; 1983 Aug 28; 364(8):977-87. PubMed ID: 6629333
    [Abstract] [Full Text] [Related]

  • 8. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase.
    Oshino N, Chance B.
    Biochem J; 1977 Mar 15; 162(3):509-25. PubMed ID: 17386
    [Abstract] [Full Text] [Related]

  • 9. Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Eklöw L, Moldéus P, Orrenius S.
    Eur J Biochem; 1984 Feb 01; 138(3):459-63. PubMed ID: 6692829
    [Abstract] [Full Text] [Related]

  • 10. Effects of hypophysectomy and administration of growth and thyroid hormones on the hydroperoxide-induced calcium release process and glutathione levels in rat liver mitochondria.
    Rapuano BE, Maddaiah VT.
    Arch Biochem Biophys; 1988 Jan 01; 260(1):359-76. PubMed ID: 3341749
    [Abstract] [Full Text] [Related]

  • 11. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF.
    Free Radic Biol Med; 2013 Oct 01; 63():446-56. PubMed ID: 23747984
    [Abstract] [Full Text] [Related]

  • 12. Effect of selenium deficiency on hydroperoxide-induced glutathione release from the isolated perfused rat heart.
    Xia YM, Hill KE, Burk RF.
    J Nutr; 1985 Jun 01; 115(6):733-42. PubMed ID: 3998867
    [Abstract] [Full Text] [Related]

  • 13. Control of pyruvate carboxylase activity by the pyridine-nucleotide redox state in mitochondria from rat liver.
    Siess EA, Banik E, Neugebauer S.
    Eur J Biochem; 1988 Apr 15; 173(2):369-74. PubMed ID: 3360015
    [Abstract] [Full Text] [Related]

  • 14. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress.
    Fernández-Checa JC, García-Ruiz C, Ookhtens M, Kaplowitz N.
    J Clin Invest; 1991 Feb 15; 87(2):397-405. PubMed ID: 1991826
    [Abstract] [Full Text] [Related]

  • 15. Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress.
    Ravindranath V, Reed DJ.
    Biochem Biophys Res Commun; 1990 Jun 29; 169(3):1075-9. PubMed ID: 2363716
    [Abstract] [Full Text] [Related]

  • 16. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes.
    Rush GF, Alberts D.
    Toxicol Appl Pharmacol; 1986 Sep 30; 85(3):324-31. PubMed ID: 2945286
    [Abstract] [Full Text] [Related]

  • 17. Inactivation of 2-oxoglutarate dehydrogenase in rat liver mitochondria by its substrate and t-butyl hydroperoxide.
    Rokutan K, Kawai K, Asada K.
    J Biochem; 1987 Feb 30; 101(2):415-22. PubMed ID: 3584093
    [Abstract] [Full Text] [Related]

  • 18. A simple assay for monoamine oxidase using glutathione peroxidase and glutathione reductase.
    Nakano T, Kawai S, Nagatsu T.
    Jpn J Pharmacol; 1984 Jun 30; 35(2):163-7. PubMed ID: 6748378
    [Abstract] [Full Text] [Related]

  • 19. Rat lung glutathione release: response to oxidative stress and selenium deficiency.
    Jenkinson SG, Spence TH, Lawrence RA, Hill KE, Duncan CA, Johnson KH.
    J Appl Physiol (1985); 1987 Jan 30; 62(1):55-60. PubMed ID: 3558197
    [Abstract] [Full Text] [Related]

  • 20. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi.
    Boveris A, Sies H, Martino EE, Docampo R, Turrens JF, Stoppani AO.
    Biochem J; 1980 Jun 15; 188(3):643-8. PubMed ID: 7008779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.