These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 22292929
21. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow. Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ. PLoS One; 2015; 10(8):e0136040. PubMed ID: 26295345 [Abstract] [Full Text] [Related]
22. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, Leff JW, Luis AD, Seabloom EW, Henning JA. Nat Commun; 2021 Jun 09; 12(1):3484. PubMed ID: 34108462 [Abstract] [Full Text] [Related]
23. Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. Babalola BJ, Li J, Willing CE, Zheng Y, Wang YL, Gan HY, Li XC, Wang C, Adams CA, Gao C, Guo LD. New Phytol; 2022 Jun 09; 234(6):2057-2072. PubMed ID: 35179789 [Abstract] [Full Text] [Related]
24. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Schüßler A, Krüger C, Urgiles N. Mycorrhiza; 2016 Apr 09; 26(3):199-207. PubMed ID: 26260945 [Abstract] [Full Text] [Related]
25. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Han Y, Feng J, Han M, Zhu B. Glob Chang Biol; 2020 Dec 09; 26(12):7229-7241. PubMed ID: 32981218 [Abstract] [Full Text] [Related]
26. Interactions between arbuscular mycorrhizal fungi and non-host Carex capillacea. Zhang H, Qin Z, Chu Y, Li X, Christie P, Zhang J, Gai J. Mycorrhiza; 2019 Mar 09; 29(2):149-157. PubMed ID: 30693375 [Abstract] [Full Text] [Related]
27. Effects of long-term fertilization on arbuscular mycorrhizal fungal community in lime concretion black soil. Ma YY, Zhang HC, Xiang XJ, Wang DZ, Guo XS, Guo ZB, Sun RB, Chu HY. Ying Yong Sheng Tai Xue Bao; 2018 Oct 09; 29(10):3398-3406. PubMed ID: 30325166 [Abstract] [Full Text] [Related]
28. Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Kim YC, Gao C, Zheng Y, He XH, Yang W, Chen L, Wan SQ, Guo LD. Mycorrhiza; 2015 May 09; 25(4):267-76. PubMed ID: 25307533 [Abstract] [Full Text] [Related]
29. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. Treseder KK, Allen MF. New Phytol; 2002 Sep 09; 155(3):507-515. PubMed ID: 33873310 [Abstract] [Full Text] [Related]
30. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. Glob Chang Biol; 2014 Dec 09; 20(12):3646-59. PubMed ID: 24764217 [Abstract] [Full Text] [Related]
31. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. Liu L, Hart MM, Zhang J, Cai X, Gai J, Christie P, Li X, Klironomos JN. FEMS Microbiol Ecol; 2015 Jul 09; 91(7):. PubMed ID: 26142427 [Abstract] [Full Text] [Related]
32. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA, Rahm J, Aliasgharzad N. FEMS Microbiol Ecol; 2010 Apr 09; 72(1):125-31. PubMed ID: 20459516 [Abstract] [Full Text] [Related]
33. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Zhou X, Fu L, Xia Y, Zheng L, Chen C, Shen Z, Chen Y. Metallomics; 2017 Jul 19; 9(7):936-948. PubMed ID: 28613326 [Abstract] [Full Text] [Related]
35. [Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China]. Zong N, Shi PL, Niu B, Jiang J, Song MH, Zhang XZ, He YT. Ying Yong Sheng Tai Xue Bao; 2014 Dec 19; 25(12):3458-68. PubMed ID: 25876395 [Abstract] [Full Text] [Related]
36. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau. Li X, Zhang J, Gai J, Cai X, Christie P, Li X. Environ Microbiol; 2015 Aug 19; 17(8):2841-57. PubMed ID: 25630567 [Abstract] [Full Text] [Related]
37. Responses of arbuscular mycorrhizal symbionts to contrasting environments: field evidence along a Tibetan elevation gradient. Yang R, Li S, Cai X, Li X, Christie P, Zhang J, Gai J. Mycorrhiza; 2016 Oct 19; 26(7):623-32. PubMed ID: 27095656 [Abstract] [Full Text] [Related]
38. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX, Su ZZ, Xing HE, Wang FY, Shi ZY, Liu XQ. Huan Jing Ke Xue; 2016 Aug 08; 37(8):3208-3215. PubMed ID: 29964752 [Abstract] [Full Text] [Related]
39. Vegetation distribution along mountain environmental gradient predicts shifts in plant community response to climate change in alpine meadow on the Tibetan Plateau. Niu Y, Yang S, Zhou J, Chu B, Ma S, Zhu H, Hua L. Sci Total Environ; 2019 Feb 10; 650(Pt 1):505-514. PubMed ID: 30205341 [Abstract] [Full Text] [Related]
40. Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau. Zong N, Shi P, Song M, Zhang X, Jiang J, Chai X. Environ Manage; 2016 Mar 10; 57(3):531-42. PubMed ID: 26475686 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]