These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 22296957

  • 1. 3'-axial CH2 OH substitution on glucopyranose does not increase glycogen phosphorylase inhibitory potency. QM/MM-PBSA calculations suggest why.
    Manta S, Xipnitou A, Kiritsis C, Kantsadi AL, Hayes JM, Skamnaki VT, Lamprakis C, Kontou M, Zoumpoulakis P, Zographos SE, Leonidas DD, Komiotis D.
    Chem Biol Drug Des; 2012 May; 79(5):663-73. PubMed ID: 22296957
    [Abstract] [Full Text] [Related]

  • 2. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol.
    Tsitsanou KE, Hayes JM, Keramioti M, Mamais M, Oikonomakos NG, Kato A, Leonidas DD, Zographos SE.
    Food Chem Toxicol; 2013 Nov; 61():14-27. PubMed ID: 23279842
    [Abstract] [Full Text] [Related]

  • 3. Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-glucopyranosyl urea binding.
    Alexacou KM, Hayes JM, Tiraidis C, Zographos SE, Leonidas DD, Chrysina ED, Archontis G, Oikonomakos NG, Paul JV, Varghese B, Loganathan D.
    Proteins; 2008 May 15; 71(3):1307-23. PubMed ID: 18041758
    [Abstract] [Full Text] [Related]

  • 4. The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b.
    Kantsadi AL, Hayes JM, Manta S, Skamnaki VT, Kiritsis C, Psarra AM, Koutsogiannis Z, Dimopoulou A, Theofanous S, Nikoleousakos N, Zoumpoulakis P, Kontou M, Papadopoulos G, Zographos SE, Komiotis D, Leonidas DD.
    ChemMedChem; 2012 Apr 15; 7(4):722-32. PubMed ID: 22267166
    [Abstract] [Full Text] [Related]

  • 5. 1-(3-Deoxy-3-fluoro-beta-d-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies.
    Tsirkone VG, Tsoukala E, Lamprakis C, Manta S, Hayes JM, Skamnaki VT, Drakou C, Zographos SE, Komiotis D, Leonidas DD.
    Bioorg Med Chem; 2010 May 15; 18(10):3413-25. PubMed ID: 20430629
    [Abstract] [Full Text] [Related]

  • 6. Advances in glycogen phosphorylase inhibitor design.
    Oikonomakos NG, Somsák L.
    Curr Opin Investig Drugs; 2008 Apr 15; 9(4):379-95. PubMed ID: 18393105
    [Abstract] [Full Text] [Related]

  • 7. Glycogen phosphorylase inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin analogues.
    Archontis G, Watson KA, Xie Q, Andreou G, Chrysina ED, Zographos SE, Oikonomakos NG, Karplus M.
    Proteins; 2005 Dec 01; 61(4):984-98. PubMed ID: 16245298
    [Abstract] [Full Text] [Related]

  • 8. N-(4-Substituted-benzoyl)-N'-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods.
    Nagy V, Felföldi N, Kónya B, Praly JP, Docsa T, Gergely P, Chrysina ED, Tiraidis C, Kosmopoulou MN, Alexacou KM, Konstantakaki M, Leonidas DD, Zographos SE, Oikonomakos NG, Kozmon S, Tvaroška I, Somsák L.
    Bioorg Med Chem; 2012 Mar 01; 20(5):1801-16. PubMed ID: 22325154
    [Abstract] [Full Text] [Related]

  • 9. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors.
    Kantsadi AL, Parmenopoulou V, Bakalov DN, Snelgrove L, Stravodimos GA, Chatzileontiadou DS, Manta S, Panagiotopoulou A, Hayes JM, Komiotis D, Leonidas DD.
    Curr Top Med Chem; 2015 Mar 01; 15(23):2373-89. PubMed ID: 26088352
    [Abstract] [Full Text] [Related]

  • 10. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors.
    Kun S, Begum J, Kyriakis E, Stamati ECV, Barkas TA, Szennyes E, Bokor É, Szabó KE, Stravodimos GA, Sipos Á, Docsa T, Gergely P, Moffatt C, Patraskaki MS, Kokolaki MC, Gkerdi A, Skamnaki VT, Leonidas DD, Somsák L, Hayes JM.
    Eur J Med Chem; 2018 Mar 10; 147():266-278. PubMed ID: 29453094
    [Abstract] [Full Text] [Related]

  • 11. Glucose-based spiro-isoxazolines: a new family of potent glycogen phosphorylase inhibitors.
    Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly JP, Kizilis G, Tiraidis C, Alexacou KM, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG.
    Bioorg Med Chem; 2009 Oct 15; 17(20):7368-80. PubMed ID: 19781947
    [Abstract] [Full Text] [Related]

  • 12. Ligand-based modelling followed by synthetic exploration unveil novel glycogen phosphorylase inhibitory leads.
    Habash M, Taha MO.
    Bioorg Med Chem; 2011 Aug 15; 19(16):4746-71. PubMed ID: 21788139
    [Abstract] [Full Text] [Related]

  • 13. Modeling aided design of potent glycogen phosphorylase inhibitors.
    Deng Q, Lu Z, Bohn J, Ellsworth KP, Myers RW, Geissler WM, Harris G, Willoughby CA, Chapman K, McKeever B, Mosley R.
    J Mol Graph Model; 2005 Apr 15; 23(5):457-64. PubMed ID: 15781188
    [Abstract] [Full Text] [Related]

  • 14. Kinetic and crystallographic studies of glucopyranose spirohydantoin and glucopyranosylamine analogs inhibitors of glycogen phosphorylase.
    Watson KA, Chrysina ED, Tsitsanou KE, Zographos SE, Archontis G, Fleet GW, Oikonomakos NG.
    Proteins; 2005 Dec 01; 61(4):966-83. PubMed ID: 16222658
    [Abstract] [Full Text] [Related]

  • 15. Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition.
    Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly JP, Azay-Milhau J, Vidal S.
    Eur J Med Chem; 2016 Jan 27; 108():444-454. PubMed ID: 26708111
    [Abstract] [Full Text] [Related]

  • 16. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy.
    Thomson SA, Banker P, Bickett DM, Boucheron JA, Carter HL, Clancy DC, Cooper JP, Dickerson SH, Garrido DM, Nolte RT, Peat AJ, Sheckler LR, Sparks SM, Tavares FX, Wang L, Wang TY, Weiel JE.
    Bioorg Med Chem Lett; 2009 Feb 15; 19(4):1177-82. PubMed ID: 19138846
    [Abstract] [Full Text] [Related]

  • 17. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G.
    Bioorg Med Chem; 2007 Dec 15; 15(24):7865-77. PubMed ID: 17870536
    [Abstract] [Full Text] [Related]

  • 18. Synthesis of N-glucopyranosidic derivatives as potential inhibitors that bind at the catalytic site of glycogen phosphorylase.
    Gimisis T.
    Mini Rev Med Chem; 2010 Oct 15; 10(12):1127-38. PubMed ID: 20716054
    [Abstract] [Full Text] [Related]

  • 19. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy.
    Oikonomakos NG.
    Curr Protein Pept Sci; 2002 Dec 15; 3(6):561-86. PubMed ID: 12470212
    [Abstract] [Full Text] [Related]

  • 20. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments.
    Somsák L, Nagya V, Hadady Z, Docsa T, Gergely P.
    Curr Pharm Des; 2003 Dec 15; 9(15):1177-89. PubMed ID: 12769745
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.