These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 22297686

  • 1. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X, Tang F, Copple A.
    J Phys Condens Matter; 2012 Feb 22; 24(7):075501. PubMed ID: 22297686
    [Abstract] [Full Text] [Related]

  • 2. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.
    Sun L, Li Q, Ren H, Su H, Shi QW, Yang J.
    J Chem Phys; 2008 Aug 21; 129(7):074704. PubMed ID: 19044789
    [Abstract] [Full Text] [Related]

  • 3. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes.
    Lu P, Wu X, Guo W, Zeng XC.
    Phys Chem Chem Phys; 2012 Oct 05; 14(37):13035-40. PubMed ID: 22911017
    [Abstract] [Full Text] [Related]

  • 4. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons.
    Wang M, Li CM.
    Nanoscale; 2011 May 05; 3(5):2324-8. PubMed ID: 21503364
    [Abstract] [Full Text] [Related]

  • 5. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W, Lu P, Zhang Z, Guo W.
    ACS Appl Mater Interfaces; 2011 Dec 05; 3(12):4787-95. PubMed ID: 22039765
    [Abstract] [Full Text] [Related]

  • 6. Inverse relationship between carrier mobility and bandgap in graphene.
    Wang J, Zhao R, Yang M, Liu Z, Liu Z.
    J Chem Phys; 2013 Feb 28; 138(8):084701. PubMed ID: 23464166
    [Abstract] [Full Text] [Related]

  • 7. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V, Hod O, Peralta JE, Scuseria GE.
    Acc Chem Res; 2011 Apr 19; 44(4):269-79. PubMed ID: 21388164
    [Abstract] [Full Text] [Related]

  • 8. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations.
    Yazdanpanah Goharrizi A, Barzoki AM, Selberherr S, Filipovic L.
    ACS Appl Electron Mater; 2023 Aug 22; 5(8):4514-4522. PubMed ID: 37637974
    [Abstract] [Full Text] [Related]

  • 9. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N, Xu L, Wang HQ, Zheng JC.
    Nanotechnology; 2011 Mar 11; 22(10):105705. PubMed ID: 21289391
    [Abstract] [Full Text] [Related]

  • 10. Scaling of excitons in graphene nanoribbons with armchair shaped edges.
    Zhu X, Su H.
    J Phys Chem A; 2011 Nov 03; 115(43):11998-2003. PubMed ID: 21939213
    [Abstract] [Full Text] [Related]

  • 11. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes.
    Yongqing C, Zhang A, Ping Feng Y, Zhang C, Fatt Teoh H, Wei Ho G.
    J Chem Phys; 2009 Dec 14; 131(22):224701. PubMed ID: 20001070
    [Abstract] [Full Text] [Related]

  • 12. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain.
    Peng X, Tang F, Logan P.
    J Phys Condens Matter; 2011 Mar 23; 23(11):115502. PubMed ID: 21358032
    [Abstract] [Full Text] [Related]

  • 13. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons.
    Chen X, Wang H, Wan H, Song K, Zhou G.
    J Phys Condens Matter; 2011 Aug 10; 23(31):315304. PubMed ID: 21778565
    [Abstract] [Full Text] [Related]

  • 14. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope.
    Liao Z, Medrano Sandonas L, Zhang T, Gall M, Dianat A, Gutierrez R, Mühle U, Gluch J, Jordan R, Cuniberti G, Zschech E.
    Sci Rep; 2017 Mar 16; 7(1):211. PubMed ID: 28303001
    [Abstract] [Full Text] [Related]

  • 15. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A, Wu Y, Ke SH, Feng YP, Zhang C.
    Nanotechnology; 2011 Oct 28; 22(43):435702. PubMed ID: 21967829
    [Abstract] [Full Text] [Related]

  • 16. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES, Ismail R.
    Nanoscale Res Lett; 2014 Oct 28; 9(1):598. PubMed ID: 25404871
    [Abstract] [Full Text] [Related]

  • 17. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation.
    Chang SL, Wu BR, Yang PH, Lin MF.
    Phys Chem Chem Phys; 2012 Dec 21; 14(47):16409-14. PubMed ID: 23132378
    [Abstract] [Full Text] [Related]

  • 18. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H.
    J Phys Condens Matter; 2010 Sep 08; 22(35):352205. PubMed ID: 21403278
    [Abstract] [Full Text] [Related]

  • 19. Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons.
    Xiao B, Ding YH, Sun CC.
    Phys Chem Chem Phys; 2011 Feb 21; 13(7):2732-7. PubMed ID: 21152527
    [Abstract] [Full Text] [Related]

  • 20. Strain and screening effects on field emission properties of armchair graphene nanoribbon arrays: a first-principles study.
    Hu H, Loh SM, Leung TC, Lin MC.
    RSC Adv; 2018 Jun 19; 8(40):22625-22634. PubMed ID: 35539699
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.