These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


208 related items for PubMed ID: 22300421

  • 1. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells.
    Willis SM, Cheng C, Assender HE, Watt AA.
    Nano Lett; 2012 Mar 14; 12(3):1522-6. PubMed ID: 22300421
    [Abstract] [Full Text] [Related]

  • 2. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.
    Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradečak S, Bulović V.
    Adv Mater; 2013 May 28; 25(20):2790-6. PubMed ID: 23440957
    [Abstract] [Full Text] [Related]

  • 3. Ligand capping effect for dye solar cells with a CdSe quantum dot sensitized ZnO nanorod photoanode.
    Sun XW, Chen J, Song JL, Zhao DW, Deng WQ, Lei W.
    Opt Express; 2010 Jan 18; 18(2):1296-301. PubMed ID: 20173955
    [Abstract] [Full Text] [Related]

  • 4. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell.
    Luther JM, Gao J, Lloyd MT, Semonin OE, Beard MC, Nozik AJ.
    Adv Mater; 2010 Sep 01; 22(33):3704-7. PubMed ID: 20533423
    [No Abstract] [Full Text] [Related]

  • 5. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J, Zhang Q, Zhang L, Gao R, Shen L, Zhang S, Qu X, Cao G.
    Nanoscale; 2013 Feb 07; 5(3):936-43. PubMed ID: 23166058
    [Abstract] [Full Text] [Related]

  • 6. ZnO nanosheets decorated with CdSe and TiO2 for the architecture of dye-sensitized solar cells.
    Kim YT, Park MY, Choi KH, Tai WS, Shim WH, Park SY, Kang JW, Lee KH, Jeong Y, Kim YD, Lim DC.
    J Nanosci Nanotechnol; 2011 Mar 07; 11(3):2263-8. PubMed ID: 21449378
    [Abstract] [Full Text] [Related]

  • 7. ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells.
    Li C, Yang L, Xiao J, Wu YC, Søndergaard M, Luo Y, Li D, Meng Q, Iversen BB.
    Phys Chem Chem Phys; 2013 Jun 14; 15(22):8710-5. PubMed ID: 23639947
    [Abstract] [Full Text] [Related]

  • 8. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
    Jeong KS, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent EH, Asbury JB.
    ACS Nano; 2012 Jan 24; 6(1):89-99. PubMed ID: 22168594
    [Abstract] [Full Text] [Related]

  • 9. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability.
    Yang Y, Zhu L, Sun H, Huang X, Luo Y, Li D, Meng Q.
    ACS Appl Mater Interfaces; 2012 Nov 24; 4(11):6162-8. PubMed ID: 23075399
    [Abstract] [Full Text] [Related]

  • 10. CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices.
    Rakshit T, Mondal SP, Manna I, Ray SK.
    ACS Appl Mater Interfaces; 2012 Nov 24; 4(11):6085-95. PubMed ID: 23082825
    [Abstract] [Full Text] [Related]

  • 11. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.
    Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y.
    Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842
    [Abstract] [Full Text] [Related]

  • 12. Organic photovoltaic solar cells with cathode modified by ZnO.
    Kim HP, Yusoff AR, Jang J.
    J Nanosci Nanotechnol; 2013 Jul 21; 13(7):5142-7. PubMed ID: 23901543
    [Abstract] [Full Text] [Related]

  • 13. Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells.
    Rath AK, Pelayo Garcia de Arquer F, Stavrinadis A, Lasanta T, Bernechea M, Diedenhofen SL, Konstantatos G.
    Adv Mater; 2014 Jul 16; 26(27):4741-7. PubMed ID: 24895324
    [Abstract] [Full Text] [Related]

  • 14. Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics.
    Nirmal A, Kyaw AK, Sun XW, Demir HV.
    Opt Express; 2014 Oct 20; 22 Suppl 6():A1412-21. PubMed ID: 25607298
    [Abstract] [Full Text] [Related]

  • 15. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.
    Nadarajah A, Smith T, Könenkamp R.
    Nanotechnology; 2012 Dec 07; 23(48):485403. PubMed ID: 23129022
    [Abstract] [Full Text] [Related]

  • 16. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells.
    Ho CR, Tsai ML, Jhuo HJ, Lien DH, Lin CA, Tsai SH, Wei TC, Huang KP, Chen SA, He JH.
    Nanoscale; 2013 Jul 21; 5(14):6350-5. PubMed ID: 23455444
    [Abstract] [Full Text] [Related]

  • 17. The donor-supply electrode enhances performance in colloidal quantum dot solar cells.
    Maraghechi P, Labelle AJ, Kirmani AR, Lan X, Adachi MM, Thon SM, Hoogland S, Lee A, Ning Z, Fischer A, Amassian A, Sargent EH.
    ACS Nano; 2013 Jul 23; 7(7):6111-6. PubMed ID: 23738495
    [Abstract] [Full Text] [Related]

  • 18. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH.
    ACS Nano; 2010 Jun 22; 4(6):3374-80. PubMed ID: 20496882
    [Abstract] [Full Text] [Related]

  • 19. One-dimensional (1D) ZnO nanowires dye sensitized solar cell.
    Kiliç B, Wang L, Ozdemir O, Lu M, Tüzemen S.
    J Nanosci Nanotechnol; 2013 Jan 22; 13(1):333-8. PubMed ID: 23646734
    [Abstract] [Full Text] [Related]

  • 20. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B, Musselman KP, Böhm ML, Morgenstern FS, Vaynzof Y, Walker BJ, Macmanus-Driscoll JL, Greenham NC.
    ACS Nano; 2013 May 28; 7(5):4210-20. PubMed ID: 23531107
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.