These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
194 related items for PubMed ID: 22305202
1. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae. Chen JQ, Guo RX. J Hazard Mater; 2012 Mar 30; 209-210():520-3. PubMed ID: 22305202 [Abstract] [Full Text] [Related]
2. Phytoplankton toxicity of the antibiotic chlortetracycline and its UV light degradation products. Guo RX, Chen JQ. Chemosphere; 2012 Jun 30; 87(11):1254-9. PubMed ID: 22341398 [Abstract] [Full Text] [Related]
3. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Lürling M, Roessink I. Chemosphere; 2006 Oct 30; 65(4):618-26. PubMed ID: 16540149 [Abstract] [Full Text] [Related]
4. Temperature-dependent sensitivity of growth and photosynthesis of Scenedesmus obliquus, Navicula pelliculosa and two strains of Microcystis aeruginosa to the herbicide atrazine. Chalifour A, Juneau P. Aquat Toxicol; 2011 May 30; 103(1-2):9-17. PubMed ID: 21392491 [Abstract] [Full Text] [Related]
5. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin. Rico A, Zhao W, Gillissen F, Lürling M, Van den Brink PJ. Ecotoxicol Environ Saf; 2018 Feb 30; 148():228-236. PubMed ID: 29055776 [Abstract] [Full Text] [Related]
6. Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa. Park MH, Kim KH, Lee HH, Kim JS, Hwang SJ. Biotechnol Lett; 2010 Mar 30; 32(3):423-8. PubMed ID: 19898749 [Abstract] [Full Text] [Related]
7. Photosynthetic responses and accumulation of mesotrione in two freshwater algae. Ni Y, Lai J, Wan J, Chen L. Environ Sci Process Impacts; 2014 Mar 30; 16(10):2288-94. PubMed ID: 25059419 [Abstract] [Full Text] [Related]
8. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Yang W, Tang Z, Zhou F, Zhang W, Song L. Environ Toxicol Pharmacol; 2013 Mar 30; 35(2):320-4. PubMed ID: 23380052 [Abstract] [Full Text] [Related]
9. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability. Chalifour A, LeBlanc A, Sleno L, Juneau P. Ecotoxicology; 2016 Dec 30; 25(10):1822-1831. PubMed ID: 27670665 [Abstract] [Full Text] [Related]
10. Effects of aqueous extracts from the rhizome of Pontederia cordata on the growth and interspecific competition of two algal species. Qian YP, Li XT, Tian RN. Ecotoxicol Environ Saf; 2019 Jan 30; 168():401-407. PubMed ID: 30399538 [Abstract] [Full Text] [Related]
11. Fungicides and herbicide removal in Scenedesmus cell suspensions. Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P. Chemosphere; 2010 Mar 30; 79(2):117-23. PubMed ID: 20185160 [Abstract] [Full Text] [Related]
12. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Bhuvaneshwari M, Iswarya V, Archanaa S, Madhu GM, Kumar GKS, Nagarajan R, Chandrasekaran N, Mukherjee A. Aquat Toxicol; 2015 May 30; 162():29-38. PubMed ID: 25770694 [Abstract] [Full Text] [Related]
13. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa): The impact and recovery capability. Du Y, Wang J, Zhu F, Mai D, Xiang Z, Chen J, Guo R. Ecotoxicol Environ Saf; 2018 Sep 30; 160():84-93. PubMed ID: 29793205 [Abstract] [Full Text] [Related]
14. Eco-toxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Zhang W, Zhang M, Lin K, Sun W, Xiong B, Guo M, Cui X, Fu R. Environ Toxicol Pharmacol; 2012 Mar 30; 33(2):344-52. PubMed ID: 22301166 [Abstract] [Full Text] [Related]
15. Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Yu Y, Kong F, Wang M, Qian L, Shi X. Ecotoxicol Environ Saf; 2007 Jan 30; 66(1):49-56. PubMed ID: 16368143 [Abstract] [Full Text] [Related]
16. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus. Yang J, Tang H, Zhang X, Zhu X, Huang Y, Yang Z. Environ Sci Pollut Res Int; 2018 Feb 30; 25(5):4794-4802. PubMed ID: 29198029 [Abstract] [Full Text] [Related]
17. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study. Jiang R, Wei Y, Sun J, Wang J, Zhao Z, Liu Y, Li X, Cao J. Environ Sci Pollut Res Int; 2019 Mar 30; 26(9):9184-9192. PubMed ID: 30715707 [Abstract] [Full Text] [Related]
18. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Lee YK, Ahn CY, Kim HS, Oh HM. Biotechnol Lett; 2010 Nov 30; 32(11):1673-8. PubMed ID: 20640876 [Abstract] [Full Text] [Related]
19. Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Pavlić Z, Vidaković-Cifrek Z, Puntarić D. Chemosphere; 2005 Dec 30; 61(8):1061-8. PubMed ID: 16263376 [Abstract] [Full Text] [Related]
20. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Chia MA, Cordeiro-Araújo MK, Lorenzi AS, Bittencourt-Oliveira MDC. Ecotoxicol Environ Saf; 2017 Aug 30; 142():189-199. PubMed ID: 28411514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]