These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 2230950

  • 1. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.
    Stuermer CA, Rohrer B, Münz H.
    J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950
    [Abstract] [Full Text] [Related]

  • 2. Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade.
    Kaethner RJ, Stuermer CA.
    J Neurobiol; 1994 Jul; 25(7):781-96. PubMed ID: 8089656
    [Abstract] [Full Text] [Related]

  • 3. Retinotopic organization of the developing retinotectal projection in the zebrafish embryo.
    Stuermer CA.
    J Neurosci; 1988 Dec; 8(12):4513-30. PubMed ID: 2848935
    [Abstract] [Full Text] [Related]

  • 4. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H, O'Leary DD.
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [Abstract] [Full Text] [Related]

  • 5. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L, Schmid S, Neuhauss SC.
    J Neurosci; 2001 May 15; 21(10):3542-8. PubMed ID: 11331383
    [Abstract] [Full Text] [Related]

  • 6. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade.
    Hartlieb E, Stuermer CA.
    J Comp Neurol; 1989 Jun 01; 284(1):148-68. PubMed ID: 2754029
    [Abstract] [Full Text] [Related]

  • 7. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons.
    Kaethner RJ, Stuermer CA.
    J Neurosci; 1992 Aug 01; 12(8):3257-71. PubMed ID: 1494955
    [Abstract] [Full Text] [Related]

  • 8. Retinotopic order in the absence of axon competition.
    Gosse NJ, Nevin LM, Baier H.
    Nature; 2008 Apr 17; 452(7189):892-5. PubMed ID: 18368050
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Axonal arborization in the developing chick retinotectal system.
    Thanos S, Bonhoeffer F.
    J Comp Neurol; 1987 Jul 01; 261(1):155-64. PubMed ID: 3624542
    [Abstract] [Full Text] [Related]

  • 14. Activity-driven sharpening of the regenerating retinotectal projection: effects of blocking or synchronizing activity on the morphology of individual regenerating arbors.
    Schmidt JT, Buzzard M.
    J Neurobiol; 1990 Sep 01; 21(6):900-17. PubMed ID: 1706412
    [Abstract] [Full Text] [Related]

  • 15. EphrinB2a in the zebrafish retinotectal system.
    Wagle M, Grunewald B, Subburaju S, Barzaghi C, Le Guyader S, Chan J, Jesuthasan S.
    J Neurobiol; 2004 Apr 01; 59(1):57-65. PubMed ID: 15007827
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.