These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 22309656
1. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. Yu S, Du J, Luo T, Huang Y, Jing C. J Hazard Mater; 2012 Mar 30; 209-210():250-5. PubMed ID: 22309656 [Abstract] [Full Text] [Related]
2. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG. Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835 [Abstract] [Full Text] [Related]
3. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels. Horowitz SB, Finley BL. J Toxicol Environ Health; 1993 Dec 15; 40(4):585-99. PubMed ID: 8277520 [Abstract] [Full Text] [Related]
4. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. Du J, Lu J, Wu Q, Jing C. J Hazard Mater; 2012 May 15; 215-216():152-8. PubMed ID: 22417394 [Abstract] [Full Text] [Related]
5. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment. Tinjum JM, Benson CH, Edil TB. Sci Total Environ; 2008 Feb 25; 391(1):13-25. PubMed ID: 18067949 [Abstract] [Full Text] [Related]
7. A new method for the treatment of chromite ore processing residues. Wang T, He M, Pan Q. J Hazard Mater; 2007 Oct 22; 149(2):440-4. PubMed ID: 17482759 [Abstract] [Full Text] [Related]
11. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ, Meyer DM, Sauer MM, Paustenbach DJ. J Toxicol Environ Health; 1991 Feb 22; 32(2):161-201. PubMed ID: 1995927 [Abstract] [Full Text] [Related]
15. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ, Cirmo A. J Hazard Mater; 2010 Nov 15; 183(1-3):145-54. PubMed ID: 20674158 [Abstract] [Full Text] [Related]
16. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. Chrysochoou M, Dermatas D. J Hazard Mater; 2007 Mar 15; 141(2):370-7. PubMed ID: 16842911 [Abstract] [Full Text] [Related]
17. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior. Zhang DL, Zhang MY, Zhang CH, Sun YJ, Sun X, Yuan XZ. Environ Sci Technol; 2016 Mar 15; 50(6):3111-8. PubMed ID: 26862886 [Abstract] [Full Text] [Related]
18. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM, Stewart MA, Barnett MO, Basta NT, Brooks SC, Fendorf S, Mehlhorn TL. Environ Sci Technol; 2013 Oct 01; 47(19):11241-8. PubMed ID: 23941581 [Abstract] [Full Text] [Related]
19. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2. Li Y, Liang J, Yang Z, Wang H, Liu Y. Sci Total Environ; 2019 Mar 25; 658():315-323. PubMed ID: 30577025 [Abstract] [Full Text] [Related]
20. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons. Matern K, Weigand H, Singh A, Mansfeldt T. Environ Sci Pollut Res Int; 2017 Feb 25; 24(4):3582-3592. PubMed ID: 27882493 [Abstract] [Full Text] [Related] Page: [Next] [New Search]