These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 22324514

  • 21. Carbonation of gypsum from wet flue gas desulfurization process: experiments and modeling.
    Tan W, Zhang Z, Li H, Li Y, Shen Z.
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8602-8608. PubMed ID: 28194677
    [Abstract] [Full Text] [Related]

  • 22. Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials.
    Telesca A, Marroccoli M, Calabrese D, Valenti GL, Montagnaro F.
    Waste Manag; 2013 Mar; 33(3):628-33. PubMed ID: 23219474
    [Abstract] [Full Text] [Related]

  • 23. Interactions between mercury and dry FGD ash in simulated post combustion conditions.
    Wu S, Wang S, Gao J, Wu Y, Chen G, Zhu Y.
    J Hazard Mater; 2011 Apr 15; 188(1-3):391-8. PubMed ID: 21334138
    [Abstract] [Full Text] [Related]

  • 24. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.
    Kaufman EN, Little MH, Selvaraj P.
    Appl Biochem Biotechnol; 1997 Apr 15; 63-65():677-93. PubMed ID: 18576124
    [Abstract] [Full Text] [Related]

  • 25. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD, Sollenberg H, Westas H.
    Sci Total Environ; 2003 Mar 20; 304(1-3):137-44. PubMed ID: 12663178
    [Abstract] [Full Text] [Related]

  • 26. Impact of Oxy-Fuel Conditions on Elemental Mercury Re-Emission in Wet Flue Gas Desulfurization Systems.
    Fernández-Miranda N, Lopez-Anton MA, Torre-Santos T, Díaz-Somoano M, Martínez-Tarazona MR.
    Environ Sci Technol; 2016 Jul 05; 50(13):7247-53. PubMed ID: 27329988
    [Abstract] [Full Text] [Related]

  • 27. Biogeochemical oxidation of calcium sulfite hemihydrate to gypsum in flue gas desulfurization byproduct using sulfur-oxidizing bacteria.
    Graves D, Smith JJ, Chen L, Kreinberg A, Wallace B, White R.
    J Environ Manage; 2017 Oct 01; 201():357-365. PubMed ID: 28692835
    [Abstract] [Full Text] [Related]

  • 28. Experimental study on the evaporation and chlorine migration of desulfurization wastewater in flue gas.
    Zheng C, Zheng H, Yang Z, Liu S, Li X, Zhang Y, Weng W, Gao X.
    Environ Sci Pollut Res Int; 2019 Feb 01; 26(5):4791-4800. PubMed ID: 30565110
    [Abstract] [Full Text] [Related]

  • 29. Technical description of parameters influencing the pH value of suspension absorbent used in flue gas desulfurization systems.
    Głomba M.
    J Air Waste Manag Assoc; 2010 Aug 01; 60(8):1009-16. PubMed ID: 20842941
    [Abstract] [Full Text] [Related]

  • 30. The importance of the location of sodium chlorite application in a multipollutant flue gas cleaning system.
    Krzyzynska R, Hutson ND.
    J Air Waste Manag Assoc; 2012 Jun 01; 62(6):707-16. PubMed ID: 22788109
    [Abstract] [Full Text] [Related]

  • 31. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.
    Cheng CM, Chang YN, Sistani KR, Wang YW, Lu WC, Lin CW, Dong JH, Hu CC, Pan WP.
    J Air Waste Manag Assoc; 2012 Feb 01; 62(2):139-50. PubMed ID: 22442930
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.
    Chen C, Liu S, Gao Y, Liu Y.
    ScientificWorldJournal; 2014 Feb 01; 2014():581724. PubMed ID: 24737981
    [Abstract] [Full Text] [Related]

  • 34. Using flue gas desulfurization gypsum to remove dissolved phosphorus from agricultural drainage waters.
    Bryant RB, Buda AR, Kleinman PJ, Church CD, Saporito LS, Folmar GJ, Bose S, Allen AL.
    J Environ Qual; 2012 Feb 01; 41(3):664-71. PubMed ID: 22565248
    [Abstract] [Full Text] [Related]

  • 35. Mechanisms controlling the leaching kinetics of fixated flue gas desulfurization (FGD) material under neutral and acidic conditions.
    Cheng CM, Walker HW, Bigham JM.
    J Environ Qual; 2007 Feb 01; 36(3):874-86. PubMed ID: 17485719
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.
    Chen L, Stehouwer R, Tong X, Kost D, Bigham JM, Dick WA.
    Chemosphere; 2015 Sep 01; 134():459-65. PubMed ID: 26001939
    [Abstract] [Full Text] [Related]

  • 38. Simultaneous desulfurization and denitrification from flue gas by Ferrate(VI).
    Zhao Y, Han Y, Ma T, Guo T.
    Environ Sci Technol; 2011 May 01; 45(9):4060-5. PubMed ID: 21466216
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Dissolution rate of South African calcium-based materials at constant pH.
    Siagi ZO, Mbarawa M.
    J Hazard Mater; 2009 Apr 30; 163(2-3):678-82. PubMed ID: 18703281
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.