These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 22328122

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Determination of Fragility in Organic Small Molecular Glass Forming Liquids: Comparison of Calorimetric and Spectroscopic Data and Commentary on Pharmaceutical Importance.
    Chakravarty P, Pandya K, Nagapudi K.
    Mol Pharm; 2018 Mar 05; 15(3):1248-1257. PubMed ID: 29384682
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Glass fragility and the stability of pharmaceutical preparations--excipient selection.
    Hatley RH.
    Pharm Dev Technol; 1997 Aug 05; 2(3):257-64. PubMed ID: 9552453
    [Abstract] [Full Text] [Related]

  • 5. Co-melting behaviour of sucrose, glucose & fructose.
    Wang Y, Truong T, Li H, Bhandari B.
    Food Chem; 2019 Mar 01; 275():292-298. PubMed ID: 30724199
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W, Motherwell WD, Zifferer G.
    J Phys Chem B; 2006 Oct 05; 110(39):19678-84. PubMed ID: 17004837
    [Abstract] [Full Text] [Related]

  • 10. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part II: Mathematical modeling.
    Jiang B, Liu Y, Bhandari B, Zhou W.
    J Agric Food Chem; 2008 Jul 09; 56(13):5148-52. PubMed ID: 18553880
    [Abstract] [Full Text] [Related]

  • 11. Solvation of a probe molecule by fluid supercooled water in a hydrogel at 200 K.
    Santangelo MG, Levantino M, Cupane A, Jeschke G.
    J Phys Chem B; 2008 Dec 11; 112(49):15546-53. PubMed ID: 19053683
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature.
    Golic M, Walsh K, Lawson P.
    Appl Spectrosc; 2003 Feb 11; 57(2):139-45. PubMed ID: 14610949
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Melting behaviour of D-sucrose, D-glucose and D-fructose.
    Hurtta M, Pitkänen I, Knuutinen J.
    Carbohydr Res; 2004 Sep 13; 339(13):2267-73. PubMed ID: 15337455
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Air-liquid partition coefficients of aroma volatiles in frozen sugar solutions.
    Klooster JR, Druaux C, Vreeker R.
    J Agric Food Chem; 2005 Jun 01; 53(11):4503-9. PubMed ID: 15913317
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.