These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
390 related items for PubMed ID: 22328261
1. Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Li Y, Park JY, Shiroma R, Ike M, Tokuyasu K. Appl Biochem Biotechnol; 2012 Apr; 166(7):1781-90. PubMed ID: 22328261 [Abstract] [Full Text] [Related]
2. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y, Park JY, Shiroma R, Tokuyasu K. J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [Abstract] [Full Text] [Related]
3. Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Yuvadetkun P, Leksawasdi N, Boonmee M. Prep Biochem Biotechnol; 2017 Mar 16; 47(3):268-275. PubMed ID: 27552485 [Abstract] [Full Text] [Related]
4. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related]
5. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037. Wen X, Sidhu S, Horemans SKC, Sooksawat N, Harner NK, Bajwa PK, Yuan Z, Lee H. J Biosci Bioeng; 2016 Jun 15; 121(6):631-637. PubMed ID: 26596373 [Abstract] [Full Text] [Related]
6. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS. J Biotechnol; 2010 Nov 15; 150(3):404-7. PubMed ID: 20933550 [Abstract] [Full Text] [Related]
7. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Zhang J, Geng A, Yao C, Lu Y, Li Q. Bioresour Technol; 2012 Feb 15; 105():134-41. PubMed ID: 22196071 [Abstract] [Full Text] [Related]
8. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH. J Ind Microbiol Biotechnol; 2002 Jul 15; 29(1):16-9. PubMed ID: 12080422 [Abstract] [Full Text] [Related]
9. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A. J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417 [Abstract] [Full Text] [Related]
10. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK, Sedlak M, Khan A, Ho NW. Appl Microbiol Biotechnol; 2010 Aug 30; 87(5):1803-11. PubMed ID: 20449743 [Abstract] [Full Text] [Related]
11. A novel lime pretreatment for subsequent bioethanol production from rice straw--calcium capturing by carbonation (CaCCO) process. Park JY, Shiroma R, Al-Haq MI, Zhang Y, Ike M, Arai-Sanoh Y, Ida A, Kondo M, Tokuyasu K. Bioresour Technol; 2010 Sep 30; 101(17):6805-11. PubMed ID: 20382526 [Abstract] [Full Text] [Related]
12. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R, Pramanik K. Appl Biochem Biotechnol; 2012 Jun 30; 167(4):873-84. PubMed ID: 22639357 [Abstract] [Full Text] [Related]
13. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U. Biotechnol Bioeng; 2004 Jul 05; 87(1):90-8. PubMed ID: 15211492 [Abstract] [Full Text] [Related]
14. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS, Lachke AH. Appl Biochem Biotechnol; 1990 Nov 05; 26(2):151-8. PubMed ID: 2091527 [Abstract] [Full Text] [Related]
15. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Mussatto SI, Silva CJ, Roberto IC. Appl Microbiol Biotechnol; 2006 Oct 05; 72(4):681-6. PubMed ID: 16541249 [Abstract] [Full Text] [Related]
16. [Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01]. Ge J, Liu G, Yang X, Sun H, Ling H, Ping W. Sheng Wu Gong Cheng Xue Bao; 2011 Mar 05; 27(3):404-11. PubMed ID: 21650021 [Abstract] [Full Text] [Related]
17. A model of xylitol production by the yeast Candida mogii. Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HH, Chisti Y. Bioprocess Biosyst Eng; 2005 Dec 05; 28(3):175-83. PubMed ID: 16215727 [Abstract] [Full Text] [Related]
18. Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. Abbi M, Kuhad RC, Singh A. J Ind Microbiol; 1996 Jul 05; 17(1):20-3. PubMed ID: 8987687 [Abstract] [Full Text] [Related]
19. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Fonseca C, Olofsson K, Ferreira C, Runquist D, Fonseca LL, Hahn-Hägerdal B, Lidén G. Enzyme Microb Technol; 2011 May 06; 48(6-7):518-25. PubMed ID: 22113025 [Abstract] [Full Text] [Related]
20. [Transcript profile of converting xylose and glucose to ethanol by Candida shehatae]. Xiong X, Cai P, Xu Y, Yong Q, Yu S. Wei Sheng Wu Xue Bao; 2013 Apr 04; 53(4):339-45. PubMed ID: 23858708 [Abstract] [Full Text] [Related] Page: [Next] [New Search]