These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 22328615
1. Feed forward and feedback control for over-ground locomotion in anaesthetized cats. Mazurek KA, Holinski BJ, Everaert DG, Stein RB, Etienne-Cummings R, Mushahwar VK. J Neural Eng; 2012 Apr; 9(2):026003. PubMed ID: 22328615 [Abstract] [Full Text] [Related]
2. Physiologically based controller for generating overground locomotion using functional electrical stimulation. Guevremont L, Norton JA, Mushahwar VK. J Neurophysiol; 2007 Mar; 97(3):2499-510. PubMed ID: 17229823 [Abstract] [Full Text] [Related]
4. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation. Normann RA, Dowden BR, Frankel MA, Wilder AM, Hiatt SD, Ledbetter NM, Warren DA, Clark GA. J Neural Eng; 2012 Apr; 9(2):026019. PubMed ID: 22414699 [Abstract] [Full Text] [Related]
5. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking. Trank TV, Chen C, Smith JL. J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606 [Abstract] [Full Text] [Related]
6. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings. Bruns TM, Wagenaar JB, Bauman MJ, Gaunt RA, Weber DJ. J Neural Eng; 2013 Apr; 10(2):026020. PubMed ID: 23503062 [Abstract] [Full Text] [Related]
7. Towards a general neural controller for quadrupedal locomotion. Maufroy C, Kimura H, Takase K. Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136 [Abstract] [Full Text] [Related]
8. Real-time control of walking using recordings from dorsal root ganglia. Holinski BJ, Everaert DG, Mushahwar VK, Stein RB. J Neural Eng; 2013 Oct; 10(5):056008. PubMed ID: 23928579 [Abstract] [Full Text] [Related]
9. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
10. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking. Carlson-Kuhta P, Trank TV, Smith JL. J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939 [Abstract] [Full Text] [Related]
11. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics. Prilutsky BI, Herzog W, Allinger TL. J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010 [Abstract] [Full Text] [Related]
12. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion. Frigon A, Sirois J, Gossard JP. J Neurophysiol; 2010 Mar; 103(3):1591-605. PubMed ID: 20089809 [Abstract] [Full Text] [Related]
13. Contribution of force feedback to ankle extensor activity in decerebrate walking cats. Donelan JM, Pearson KG. J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742 [Abstract] [Full Text] [Related]
14. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation. Lau B, Guevremont L, Mushahwar VK. IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198 [Abstract] [Full Text] [Related]
15. [Mathematical model of the hindlimbs control during cat locomotion with balance]. Lyakhovetskii VA, Gorskii OV, Gerasimenko YP, Musienko PE. Ross Fiziol Zh Im I M Sechenova; 2015 Feb; 101(2):200-13. PubMed ID: 26012112 [Abstract] [Full Text] [Related]
16. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles. Pratt CA, Buford JA, Smith JL. J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656 [Abstract] [Full Text] [Related]
17. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. Frigon A, Thibaudier Y, Hurteau MF. Neuroscience; 2015 Apr 02; 290():266-78. PubMed ID: 25644423 [Abstract] [Full Text] [Related]
18. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Au S, Berniker M, Herr H. Neural Netw; 2008 May 02; 21(4):654-66. PubMed ID: 18499394 [Abstract] [Full Text] [Related]
19. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns. Gregor RJ, Smith DW, Prilutsky BI. J Neurophysiol; 2006 Mar 02; 95(3):1397-409. PubMed ID: 16207777 [Abstract] [Full Text] [Related]
20. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats. Bouyer LJ, Rossignol S. J Neurophysiol; 2003 Dec 02; 90(6):3625-39. PubMed ID: 12944536 [Abstract] [Full Text] [Related] Page: [Next] [New Search]