These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
535 related items for PubMed ID: 22329148
21. Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass. Wang XS, Qin Y. J Hazard Mater; 2006 Dec 01; 138(3):582-8. PubMed ID: 16839675 [Abstract] [Full Text] [Related]
22. Photo-reduction of Cr(VI) using chitosan supported zinc oxide materials. Preethi J, Farzana MH, Meenakshi S. Int J Biol Macromol; 2017 Nov 01; 104(Pt B):1783-1793. PubMed ID: 28242333 [Abstract] [Full Text] [Related]
23. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Yu J, Jiang C, Guan Q, Ning P, Gu J, Chen Q, Zhang J, Miao R. Chemosphere; 2018 Mar 01; 195():632-640. PubMed ID: 29289904 [Abstract] [Full Text] [Related]
24. ZnO-PLLA nanofiber nanocomposite for continuous flow mode purification of water from Cr(VI). Burks T, Akthar F, Saleemi M, Avila M, Kiros Y. J Environ Public Health; 2015 Mar 01; 2015():687094. PubMed ID: 26681961 [Abstract] [Full Text] [Related]
25. Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions: A system for water treatment. Djouider F. J Hazard Mater; 2012 Jul 15; 223-224():104-9. PubMed ID: 22595544 [Abstract] [Full Text] [Related]
26. Application of ZnO nanorods doped with Cu for enhanced sonocatalytic removal of Cr(VI) from aqueous solutions. Godini K, Tahergorabi M, Naimi-Joubani M, Shirzad-Siboni M, Yang JK. Environ Sci Pollut Res Int; 2020 Jan 15; 27(3):2691-2706. PubMed ID: 31836985 [Abstract] [Full Text] [Related]
27. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Xie B, Zhang H, Cai P, Qiu R, Xiong Y. Chemosphere; 2006 May 15; 63(6):956-63. PubMed ID: 16297430 [Abstract] [Full Text] [Related]
28. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. Wu Y, Zhang J, Tong Y, Xu X. J Hazard Mater; 2009 Dec 30; 172(2-3):1640-5. PubMed ID: 19740609 [Abstract] [Full Text] [Related]
29. Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Chen G, Feng J, Wang W, Yin Y, Liu H. Water Res; 2017 Jan 01; 108():383-390. PubMed ID: 27838021 [Abstract] [Full Text] [Related]
30. Photocatalytic reduction of Cr(VI) from agricultural soil column leachates using zinc oxide under UV light irradiation. Delgado-Balderas R, Hinojosa-Reyes L, Guzmán-Mar JL, Garza-González MT, López-Chuken UJ, Hernández-Ramírez A. Environ Technol; 2012 Dec 01; 33(22-24):2673-80. PubMed ID: 23437668 [Abstract] [Full Text] [Related]
31. Performance of EDTA modified magnetic ZnFe2O4 during photocatalytic reduction of Cr(VI) in aqueous solution under UV irradiation. Islam JB, Islam MR, Furukawa M, Tateishi I, Katsumata H, Kaneco S. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021 Dec 01; 56(1):44-51. PubMed ID: 33090933 [Abstract] [Full Text] [Related]
32. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system. Zhou X, Jing G, Lv B, Zhou Z, Zhu R. Chemosphere; 2016 Oct 01; 160():332-41. PubMed ID: 27393969 [Abstract] [Full Text] [Related]
33. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. Gheju M, Balcu I. J Hazard Mater; 2011 Nov 30; 196():131-8. PubMed ID: 21955659 [Abstract] [Full Text] [Related]
34. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water. Liu Y, Deng L, Chen Y, Wu F, Deng N. J Hazard Mater; 2007 Jan 10; 139(2):399-402. PubMed ID: 16844289 [Abstract] [Full Text] [Related]
35. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation. Kim Y, Joo H, Her N, Yoon Y, Sohn J, Kim S, Yoon J. J Hazard Mater; 2015 May 15; 288():124-33. PubMed ID: 25698573 [Abstract] [Full Text] [Related]
36. Photocatalytic splitting of seawater effected by (Ni-ZnO)@C nanoreactors. Yang TC, Chang FC, Wang HP, Wei YL, Jou CJ. Mar Pollut Bull; 2014 Aug 30; 85(2):696-9. PubMed ID: 24636237 [Abstract] [Full Text] [Related]
37. One stone two birds: novel carbon nanotube/Bi4VO8Cl photocatalyst for simultaneous organic pollutants degradation and Cr(VI) reduction. Zhang X, Shi D, Fan J. Environ Sci Pollut Res Int; 2017 Oct 30; 24(29):23309-23320. PubMed ID: 28836094 [Abstract] [Full Text] [Related]
38. Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO₂ under ultraviolet radiation. de Franco MA, da Silva WL, Bagnara M, Lansarin MA, Dos Santos JH. Sci Total Environ; 2014 Oct 01; 494-495():97-103. PubMed ID: 25038428 [Abstract] [Full Text] [Related]
39. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Kansal SK, Singh M, Sud D. J Hazard Mater; 2007 Mar 22; 141(3):581-90. PubMed ID: 16919871 [Abstract] [Full Text] [Related]
40. Studies on TiO(2)/ZnO photocatalysed degradation of lignin. Kansal SK, Singh M, Sud D. J Hazard Mater; 2008 May 01; 153(1-2):412-7. PubMed ID: 17936502 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]