These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 22330799

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae.
    Ma B, Liu M, Li ZH, Tao X, Wei DZ, Wang FQ.
    J Agric Food Chem; 2019 Aug 07; 67(31):8590-8598. PubMed ID: 31287301
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE.
    Metab Eng; 2017 Jan 07; 39():209-219. PubMed ID: 27939849
    [Abstract] [Full Text] [Related]

  • 6. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.
    Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J.
    Biotechnol Bioeng; 2008 Feb 15; 99(3):666-77. PubMed ID: 17705244
    [Abstract] [Full Text] [Related]

  • 7. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.
    Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J.
    Microb Cell Fact; 2012 Aug 31; 11():117. PubMed ID: 22938570
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S.
    Biotechnol Lett; 2016 Mar 31; 38(3):503-8. PubMed ID: 26614300
    [Abstract] [Full Text] [Related]

  • 14. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM, Kirby J, Chan R, Keasling JD.
    Biotechnol Bioeng; 2008 Jun 01; 100(2):371-8. PubMed ID: 18175359
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae.
    Bu X, Lin JY, Duan CQ, Koffas MAG, Yan GL.
    Microb Cell Fact; 2022 Jan 04; 21(1):3. PubMed ID: 34983533
    [Abstract] [Full Text] [Related]

  • 17. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.
    Zhang C, Liu J, Zhao F, Lu C, Zhao GR, Lu W.
    Metab Eng; 2018 Sep 04; 49():28-35. PubMed ID: 30031850
    [Abstract] [Full Text] [Related]

  • 18. Building terpene production platforms in yeast.
    Zhuang X, Chappell J.
    Biotechnol Bioeng; 2015 Sep 04; 112(9):1854-64. PubMed ID: 25788404
    [Abstract] [Full Text] [Related]

  • 19. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae.
    Kennedy MA, Bard M.
    Biochim Biophys Acta; 2001 Jan 26; 1517(2):177-89. PubMed ID: 11342098
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.