These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
335 related items for PubMed ID: 22333161
1. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y, Li H, Yu X. J Hazard Mater; 2012 Apr 30; 213-214():167-74. PubMed ID: 22333161 [Abstract] [Full Text] [Related]
2. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Yang H, Jing L, Zhang B. J Hazard Mater; 2011 Jan 30; 185(2-3):1405-11. PubMed ID: 21071144 [Abstract] [Full Text] [Related]
3. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. Li C, Sun H, Bai J, Li L. J Hazard Mater; 2010 Feb 15; 174(1-3):71-7. PubMed ID: 19782467 [Abstract] [Full Text] [Related]
4. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon. Li M, Peng B, Chai L, Peng N, Yan H, Hou D. J Hazard Mater; 2012 Oct 30; 237-238():323-30. PubMed ID: 22975260 [Abstract] [Full Text] [Related]
5. Characterization and treatment of artisanal gold mine tailings. de Andrade Lima LR, Bernardez LA, Barbosa LA. J Hazard Mater; 2008 Feb 11; 150(3):747-53. PubMed ID: 17583425 [Abstract] [Full Text] [Related]
6. An active dealkalization of red mud with roasting and water leaching. Zhu X, Li W, Guan X. J Hazard Mater; 2015 Apr 09; 286():85-91. PubMed ID: 25559862 [Abstract] [Full Text] [Related]
7. Recovery iron from cyanide tailings by anaerobic roasting-persulfate leaching: effect of roasting temperature. Dong P, Song Y, Wu L, Bao J, Yin N, Zhu R, Li Y. Environ Sci Pollut Res Int; 2023 Apr 09; 30(17):50537-50548. PubMed ID: 36795215 [Abstract] [Full Text] [Related]
8. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. Liu W, Yang J, Xiao B. J Hazard Mater; 2009 Jan 15; 161(1):474-8. PubMed ID: 18457916 [Abstract] [Full Text] [Related]
9. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J, Jiang T, Gao H, Zhou W, Xu Y, Zheng X, Liu Y, Xue X. J Environ Manage; 2019 Aug 15; 244():119-126. PubMed ID: 31112876 [Abstract] [Full Text] [Related]
10. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor. Liu Y, Du F, Yuan L, Zeng H, Kong S. J Hazard Mater; 2010 Jun 15; 178(1-3):999-1006. PubMed ID: 20227178 [Abstract] [Full Text] [Related]
11. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. Li C, Sun H, Yi Z, Li L. J Hazard Mater; 2010 Feb 15; 174(1-3):78-83. PubMed ID: 19782471 [Abstract] [Full Text] [Related]
12. Reducing acid leaching of manganiferous ore: effect of the iron removal operation on solid waste disposal. De Michelis I, Ferella F, Beolchini F, Vegliò F. Waste Manag; 2009 Jan 15; 29(1):128-35. PubMed ID: 18556190 [Abstract] [Full Text] [Related]
13. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid. Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S. J Hazard Mater; 2010 Jul 15; 179(1-3):1-7. PubMed ID: 20129730 [Abstract] [Full Text] [Related]
14. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. Antonijević MM, Dimitrijević MD, Stevanović ZO, Serbula SM, Bogdanovic GD. J Hazard Mater; 2008 Oct 01; 158(1):23-34. PubMed ID: 18329798 [Abstract] [Full Text] [Related]
15. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. Dengxin L, Guolong G, Fanling M, Chong J. J Hazard Mater; 2008 Jun 30; 155(1-2):369-77. PubMed ID: 18164812 [Abstract] [Full Text] [Related]
16. Separation of Iron and Rare Earths from Low-Intensity Magnetic Separation (LIMS) Tailings through Magnetization Roasting-Magnetic Separation. Hou S, Wang W, Zhang B, Li W, Guo C, Li Q, Li E. ChemistryOpen; 2024 Feb 30; 13(2):e202300059. PubMed ID: 37902712 [Abstract] [Full Text] [Related]
17. Pretreatment of cyanided tailings by catalytic ozonation with Mn2+/O3. Li Y, Li D, Li J, wang J, Hussain A, Ji H, Zhai Y. J Environ Sci (China); 2015 Feb 01; 28():14-21. PubMed ID: 25662233 [Abstract] [Full Text] [Related]
18. Leaching of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge for the preferential removal of iron. Majuste D, Mansur MB. J Hazard Mater; 2009 Feb 15; 162(1):356-64. PubMed ID: 18579293 [Abstract] [Full Text] [Related]
19. Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. Yu S, Yu T, Song W, Yu X, Qiao J, Wang W, Dong H, Wu Z, Dai L, Li T. Ultrason Sonochem; 2020 Jun 15; 64():105039. PubMed ID: 32097866 [Abstract] [Full Text] [Related]
20. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Chen D, Zhao L, Liu Y, Qi T, Wang J, Wang L. J Hazard Mater; 2013 Jan 15; 244-245():588-95. PubMed ID: 23177244 [Abstract] [Full Text] [Related] Page: [Next] [New Search]