These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 22334347

  • 21. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
    Beekhuizen KS, Field-Fote EC.
    Arch Phys Med Rehabil; 2008 Apr; 89(4):602-8. PubMed ID: 18373988
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury.
    Hornby TG, Zemon DH, Campbell D.
    Phys Ther; 2005 Jan; 85(1):52-66. PubMed ID: 15623362
    [Abstract] [Full Text] [Related]

  • 24. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S, Koyama S, Saitoh E, Hirano S, Yatsuya K, Tsunoda T, Katoh M, Gotoh T, Furumoto A.
    NeuroRehabilitation; 2017 Jan; 41(1):85-95. PubMed ID: 28527225
    [Abstract] [Full Text] [Related]

  • 25. An outpatient low-intensity locomotor training programme for paediatric chronic incomplete spinal cord injury.
    O'Donnell CM, Harvey AR.
    Spinal Cord; 2013 Aug; 51(8):650-1. PubMed ID: 23567757
    [Abstract] [Full Text] [Related]

  • 26. Effects of upper limb robot-assisted therapy on motor recovery of subacute stroke patients: a kinematic approach.
    Mazzoleni S, Carrozza MC, Sale P, Franceschini M, Posteraro F, Tiboni M.
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650503. PubMed ID: 24187318
    [Abstract] [Full Text] [Related]

  • 27. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N, Schearer EM, O'Malley MK.
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [Abstract] [Full Text] [Related]

  • 28. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial.
    Frullo JM, Elinger J, Pehlivan AU, Fitle K, Nedley K, Francisco GE, Sergi F, O'Malley MK.
    Front Neurorobot; 2017 Jun; 11():26. PubMed ID: 28659784
    [Abstract] [Full Text] [Related]

  • 29. Development of quantitative and sensitive assessments of physiological and functional outcome during recovery from spinal cord injury: a clinical initiative.
    Ellaway PH, Kuppuswamy A, Balasubramaniam AV, Maksimovic R, Gall A, Craggs MD, Mathias CJ, Bacon M, Prochazka A, Kowalczewski J, Conway BA, Galen S, Catton CJ, Allan DB, Curt A, Wirth B, van Hedel HJ.
    Brain Res Bull; 2011 Mar 10; 84(4-5):343-57. PubMed ID: 20728509
    [Abstract] [Full Text] [Related]

  • 30. Assisted movement with proprioceptive stimulation reduces impairment and restores function in incomplete spinal cord injury.
    Backus D, Cordo P, Gillott A, Kandilakis C, Mori M, Raslan AM.
    Arch Phys Med Rehabil; 2014 Aug 10; 95(8):1447-53. PubMed ID: 24685386
    [Abstract] [Full Text] [Related]

  • 31. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.
    Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL.
    Arch Phys Med Rehabil; 2012 Sep 10; 93(9):1508-17. PubMed ID: 21777905
    [Abstract] [Full Text] [Related]

  • 32. The effects of upper extremity progressive resistance and endurance exercises in patients with spinal cord injury.
    Dost G, Dulgeroglu D, Yildirim A, Ozgirgin N.
    J Back Musculoskelet Rehabil; 2014 Sep 10; 27(4):419-26. PubMed ID: 24614829
    [Abstract] [Full Text] [Related]

  • 33. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C, Tong RK, Susanto EA, Ho SK, Hu XL.
    IEEE Int Conf Rehabil Robot; 2013 Jun 10; 2013():6650392. PubMed ID: 24187211
    [Abstract] [Full Text] [Related]

  • 34. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics.
    Benito-Penalva J, Edwards DJ, Opisso E, Cortes M, Lopez-Blazquez R, Murillo N, Costa U, Tormos JM, Vidal-Samsó J, Valls-Solé J, European Multicenter Study about Human Spinal Cord Injury Study Group, Medina J.
    Arch Phys Med Rehabil; 2012 Mar 10; 93(3):404-12. PubMed ID: 22209475
    [Abstract] [Full Text] [Related]

  • 35. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial.
    Gorman PH, Scott W, York H, Theyagaraj M, Price-Miller N, McQuaid J, Eyvazzadeh M, Ivey FM, Macko RF.
    J Spinal Cord Med; 2016 Mar 10; 39(1):32-44. PubMed ID: 25520035
    [Abstract] [Full Text] [Related]

  • 36. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program.
    Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM.
    Arch Phys Med Rehabil; 2012 Sep 10; 93(9):1530-40. PubMed ID: 22920450
    [Abstract] [Full Text] [Related]

  • 37. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF, Campbell DD, Kahn JH, Hornby TG.
    Phys Ther; 2006 Nov 10; 86(11):1466-78. PubMed ID: 17079746
    [Abstract] [Full Text] [Related]

  • 38. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].
    Esclarín-De Ruz A, Alcobendas-Maestro M, Casado-López R, Muñoz-Gonzalez A, Florido-Sánchez MA, González-Valdizán E.
    Rev Neurol; 2006 Nov 10; 49(12):617-22. PubMed ID: 20013712
    [Abstract] [Full Text] [Related]

  • 39. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I, Hart K, Tussler D, van Middendorp JJ.
    Clin Rehabil; 2016 Jan 10; 30(1):73-84. PubMed ID: 25761635
    [Abstract] [Full Text] [Related]

  • 40. Assessment of functional improvement without compensation reduces variability of outcome measures after human spinal cord injury.
    Behrman AL, Ardolino E, Vanhiel LR, Kern M, Atkinson D, Lorenz DJ, Harkema SJ.
    Arch Phys Med Rehabil; 2012 Sep 10; 93(9):1518-29. PubMed ID: 22920449
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.