These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications. Kim Y, Woo K, Kim I, Cho YS, Jeong S, Moon J. Nanoscale; 2013 Nov 07; 5(21):10183-8. PubMed ID: 24057000 [Abstract] [Full Text] [Related]
3. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S. Zou Y, Su X, Jiang J. J Am Chem Soc; 2013 Dec 11; 135(49):18377-84. PubMed ID: 24283701 [Abstract] [Full Text] [Related]
5. Composition-tunable Cu2(Ge(1-x),Sn(x))(S(3-y),Se(y)) colloidal nanocrystals: synthesis and characterization. Wu Y, Zhou B, Li M, Yang C, Zhang WH, Li C. Chem Commun (Camb); 2014 Oct 28; 50(84):12738-41. PubMed ID: 25198654 [Abstract] [Full Text] [Related]
7. A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters. Feng J, Sun M, Yang F, Yang X. Chem Commun (Camb); 2011 Jun 14; 47(22):6422-4. PubMed ID: 21556405 [Abstract] [Full Text] [Related]
8. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Liu B, Zeng HC. Small; 2005 May 14; 1(5):566-71. PubMed ID: 17193487 [Abstract] [Full Text] [Related]
10. Controlled synthesis and luminescence of semiconductor nanorods. Li P, Wang L, Wang L, Li Y. Chemistry; 2008 May 14; 14(19):5951-6. PubMed ID: 18491306 [Abstract] [Full Text] [Related]
12. Facile synthesis of iv-vi SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets. Ning J, Men K, Xiao G, Wang L, Dai Q, Zou B, Liu B, Zou G. Nanoscale; 2010 Sep 14; 2(9):1699-703. PubMed ID: 20820700 [Abstract] [Full Text] [Related]
13. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Yang H, Jauregui LA, Zhang G, Chen YP, Wu Y. Nano Lett; 2012 Feb 08; 12(2):540-5. PubMed ID: 22214524 [Abstract] [Full Text] [Related]
14. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Bai HJ, Zhang ZM, Gong J. Biotechnol Lett; 2006 Jul 08; 28(14):1135-9. PubMed ID: 16794769 [Abstract] [Full Text] [Related]
16. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. Rogach AL, Eychmüller A, Hickey SG, Kershaw SV. Small; 2007 Apr 08; 3(4):536-57. PubMed ID: 17340666 [Abstract] [Full Text] [Related]
17. Colloidal synthesis of metastable zinc-blende IV-VI SnS nanocrystals with tunable sizes. Deng Z, Han D, Liu Y. Nanoscale; 2011 Oct 05; 3(10):4346-51. PubMed ID: 21915425 [Abstract] [Full Text] [Related]
18. Aqueous synthesis and characterization of CdS, CdS:Zn(2+) and CdS:Cu(2+) quantum dots. Unni C, Philip D, Smitha SL, Nissamudeen KM, Gopchandran KG. Spectrochim Acta A Mol Biomol Spectrosc; 2009 May 05; 72(4):827-32. PubMed ID: 19131269 [Abstract] [Full Text] [Related]
19. Coating colloidal carbon spheres with CdS nanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity. Hu Y, Liu Y, Qian H, Li Z, Chen J. Langmuir; 2010 Dec 07; 26(23):18570-5. PubMed ID: 21033732 [Abstract] [Full Text] [Related]
20. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. Han W, Yi L, Zhao N, Tang A, Gao M, Tang Z. J Am Chem Soc; 2008 Oct 01; 130(39):13152-61. PubMed ID: 18774814 [Abstract] [Full Text] [Related] Page: [Next] [New Search]