These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 22336885
1. Spatial arrangement of carbon nanotubes in TiO2 photoelectrodes to enhance the efficiency of dye-sensitized solar cells. Nath NC, Sarker S, Ahammad AJ, Lee JJ. Phys Chem Chem Phys; 2012 Apr 07; 14(13):4333-8. PubMed ID: 22336885 [Abstract] [Full Text] [Related]
2. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S. Phys Chem Chem Phys; 2005 Dec 21; 7(24):4157-63. PubMed ID: 16474882 [Abstract] [Full Text] [Related]
3. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT, Guo M, Huang H, Zhou L, Wang Y, Huang C. Nanoscale; 2012 Jan 21; 4(2):448-50. PubMed ID: 22159643 [Abstract] [Full Text] [Related]
4. Dye-sensitized solar cells based on multiwalled carbon nanotube-titania/titania bilayer structure photoelectrode. Lin WJ, Hsu CT, Tsai YC. J Colloid Interface Sci; 2011 Jun 15; 358(2):562-6. PubMed ID: 21463866 [Abstract] [Full Text] [Related]
5. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L, Dai S, Weng J, Xiao S, Sui Y, Huang Y, Chen S, Kong F, Pan X, Liang L, Wang K. J Phys Chem B; 2007 Jan 18; 111(2):358-62. PubMed ID: 17214486 [Abstract] [Full Text] [Related]
6. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Park DW, Park KH, Lee JW, Hwang KJ, Choi YK. J Nanosci Nanotechnol; 2007 Nov 18; 7(11):3722-6. PubMed ID: 18047045 [Abstract] [Full Text] [Related]
7. A TiO2 Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells. Macdonald TJ, Tune DD, Dewi MR, Gibson CT, Shapter JG, Nann T. ChemSusChem; 2015 Oct 26; 8(20):3396-400. PubMed ID: 26383499 [Abstract] [Full Text] [Related]
8. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition. Wang HW, Ting CF, Hung MK, Chiou CH, Liu YL, Liu Z, Ratinac KR, Ringer SP. Nanotechnology; 2009 Feb 04; 20(5):055601. PubMed ID: 19417348 [Abstract] [Full Text] [Related]
9. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M. ACS Nano; 2008 Jun 04; 2(6):1113-6. PubMed ID: 19206327 [Abstract] [Full Text] [Related]
10. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Yun TK, Park SS, Kim D, Shim JH, Bae JY, Huh S, Won YS. Dalton Trans; 2012 Jan 28; 41(4):1284-8. PubMed ID: 22124477 [Abstract] [Full Text] [Related]
11. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency. Shao W, Gu F, Li C, Lu M. Inorg Chem; 2010 Jun 21; 49(12):5453-9. PubMed ID: 20507078 [Abstract] [Full Text] [Related]
12. Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Yip CT, Huang H, Zhou L, Xie K, Wang Y, Feng T, Li J, Tam WY. Adv Mater; 2011 Dec 15; 23(47):5624-8. PubMed ID: 22102221 [Abstract] [Full Text] [Related]
13. Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells. Peng T, Sun W, Sun X, Huang N, Liu Y, Bu C, Guo S, Zhao XZ. Nanoscale; 2013 Jan 07; 5(1):337-41. PubMed ID: 23165970 [Abstract] [Full Text] [Related]
14. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode. Kawano R, Katakabe T, Shimosawa H, Nazeeruddin MK, Grätzel M, Matsui H, Kitamura T, Tanabe N, Watanabe M. Phys Chem Chem Phys; 2010 Feb 28; 12(8):1916-21. PubMed ID: 20145859 [Abstract] [Full Text] [Related]
15. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells. Shin JH, Kang JH, Jin WM, Park JH, Cho YS, Moon JH. Langmuir; 2011 Jan 18; 27(2):856-60. PubMed ID: 21155579 [Abstract] [Full Text] [Related]
16. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. Han J, Kim H, Kim DY, Jo SM, Jang SY. ACS Nano; 2010 Jun 22; 4(6):3503-9. PubMed ID: 20509667 [Abstract] [Full Text] [Related]
17. Mesoporous submicrometer TiO(2) hollow spheres as scatterers in dye-sensitized solar cells. Dadgostar S, Tajabadi F, Taghavinia N. ACS Appl Mater Interfaces; 2012 Jun 27; 4(6):2964-8. PubMed ID: 22606936 [Abstract] [Full Text] [Related]
18. Free-standing arrays of isolated TiO2 nanotubes through supercritical fluid drying. Deneault JR, Xiao X, Kang TS, Wang JS, Wai CM, Brown GJ, Durstock MF. Chemphyschem; 2012 Jan 16; 13(1):256-60. PubMed ID: 22147515 [Abstract] [Full Text] [Related]
20. Polyoxometalate-anatase TiO2 composites are introduced into the photoanode of dye-sensitized solar cells to retard the recombination and increase the electron lifetime. Wang SM, Liu L, Chen WL, Wang EB, Su ZM. Dalton Trans; 2013 Feb 28; 42(8):2691-5. PubMed ID: 23314419 [Abstract] [Full Text] [Related] Page: [Next] [New Search]