These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
387 related items for PubMed ID: 22337348
1. Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wu D, Zhu H. Nanoscale; 2012 Mar 21; 4(6):2130-3. PubMed ID: 22337348 [Abstract] [Full Text] [Related]
2. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D. ACS Appl Mater Interfaces; 2011 Mar 21; 3(3):721-5. PubMed ID: 21323376 [Abstract] [Full Text] [Related]
3. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. Liu Z, Li J, Sun ZH, Tai G, Lau SP, Yan F. ACS Nano; 2012 Jan 24; 6(1):810-8. PubMed ID: 22148872 [Abstract] [Full Text] [Related]
4. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Kim GH, Hwang DH, Woo SI. Phys Chem Chem Phys; 2012 Mar 14; 14(10):3530-6. PubMed ID: 22307403 [Abstract] [Full Text] [Related]
5. Nanosphere templated continuous PEDOT:PSS films with low percolation threshold for application in efficient polymer solar cells. Kang DJ, Kang H, Kim KH, Kim BJ. ACS Nano; 2012 Sep 25; 6(9):7902-9. PubMed ID: 22880844 [Abstract] [Full Text] [Related]
6. A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Ye Y, Gan L, Dai L, Dai Y, Guo X, Meng H, Yu B, Shi Z, Shang K, Qin G. Nanoscale; 2011 Apr 25; 3(4):1477-81. PubMed ID: 21359405 [Abstract] [Full Text] [Related]
7. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Moiz SA, Nahhas AM, Um HD, Jee SW, Cho HK, Kim SW, Lee JH. Nanotechnology; 2012 Apr 13; 23(14):145401. PubMed ID: 22433819 [Abstract] [Full Text] [Related]
8. CuInS₂ nanocrystals/PEDOT:PSS composite counter electrode for dye-sensitized solar cells. Zhang Z, Zhang X, Xu H, Liu Z, Pang S, Zhou X, Dong S, Chen X, Cui G. ACS Appl Mater Interfaces; 2012 Nov 13; 4(11):6242-6. PubMed ID: 23075280 [Abstract] [Full Text] [Related]
9. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G. ACS Appl Mater Interfaces; 2010 Dec 13; 2(12):3406-10. PubMed ID: 21058686 [Abstract] [Full Text] [Related]
10. Hole transport enhancing effects of polar solvents on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) for organic solar cells. Yang JS, Oh SH, Kim DL, Kim SJ, Kim HJ. ACS Appl Mater Interfaces; 2012 Oct 24; 4(10):5394-8. PubMed ID: 22957838 [Abstract] [Full Text] [Related]
11. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite. Chen J, Xu F, Wu J, Qasim K, Zhou Y, Lei W, Sun LT, Zhang Y. Nanoscale; 2012 Jan 21; 4(2):441-3. PubMed ID: 22159842 [Abstract] [Full Text] [Related]
12. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells. Khurelbaatar Z, Hyung JH, Kim GS, Park NW, Shim KH, Lee SK. J Nanosci Nanotechnol; 2014 Jun 21; 14(6):4394-9. PubMed ID: 24738402 [Abstract] [Full Text] [Related]
13. Design guideline of Si nanohole/PEDOT:PSS hybrid structure for solar cell application. Hong L, Rusli, Wang X, Zheng H, Wang H, Yu H. Nanotechnology; 2013 Sep 06; 24(35):355301. PubMed ID: 23940111 [Abstract] [Full Text] [Related]
14. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells. Wei HY, Huang JH, Ho KC, Chu CW. ACS Appl Mater Interfaces; 2010 May 06; 2(5):1281-5. PubMed ID: 20450193 [Abstract] [Full Text] [Related]
15. Application of solvent modified PEDOT:PSS to graphene electrodes in organic solar cells. Park H, Shi Y, Kong J. Nanoscale; 2013 Oct 07; 5(19):8934-9. PubMed ID: 23959398 [Abstract] [Full Text] [Related]
16. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers. Park H, Howden RM, Barr MC, Bulović V, Gleason K, Kong J. ACS Nano; 2012 Jul 24; 6(7):6370-7. PubMed ID: 22724887 [Abstract] [Full Text] [Related]
17. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M. ACS Nano; 2010 Jun 22; 4(6):3169-74. PubMed ID: 20481512 [Abstract] [Full Text] [Related]
18. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. He Z, Guai G, Liu J, Guo C, Loo JS, Li CM, Tan TT. Nanoscale; 2011 Nov 22; 3(11):4613-6. PubMed ID: 22006266 [Abstract] [Full Text] [Related]
19. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, Li LJ. ACS Nano; 2012 Jun 26; 6(6):5031-9. PubMed ID: 22632158 [Abstract] [Full Text] [Related]
20. Enhanced performance and stability of polymer BHJ photovoltaic devices from dry transfer of PEDOT:PSS. Kim JK, Park I, Kim W, Wang DH, Choi DG, Choi YS, Park JH. ChemSusChem; 2014 Jul 26; 7(7):1957-63. PubMed ID: 24989323 [Abstract] [Full Text] [Related] Page: [Next] [New Search]