These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 22340522

  • 1. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding.
    Fonceka D, Tossim HA, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF.
    BMC Plant Biol; 2012 Feb 17; 12():26. PubMed ID: 22340522
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology.
    Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, de Bellis F, Faye I, Ndoye O, Leal-Bertioli SC, Valls JF, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF.
    PLoS One; 2012 Feb 17; 7(11):e48642. PubMed ID: 23185268
    [Abstract] [Full Text] [Related]

  • 4. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.).
    Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey MK, Varshney RK, Guo B, Jiang X, Liu F, Jiang H.
    BMC Genomics; 2017 Jan 09; 18(1):58. PubMed ID: 28068921
    [Abstract] [Full Text] [Related]

  • 5. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.).
    Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H.
    Theor Appl Genet; 2015 Jun 09; 128(6):1103-15. PubMed ID: 25805315
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. An Overview of Mapping Quantitative Trait Loci in Peanut (Arachis hypogaea L.).
    Kassie FC, Nguepjop JR, Ngalle HB, Assaha DVM, Gessese MK, Abtew WG, Tossim HA, Sambou A, Seye M, Rami JF, Fonceka D, Bell JM.
    Genes (Basel); 2023 May 28; 14(6):. PubMed ID: 37372356
    [Abstract] [Full Text] [Related]

  • 8. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.).
    Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X.
    BMC Genomics; 2018 Dec 07; 19(1):887. PubMed ID: 30526476
    [Abstract] [Full Text] [Related]

  • 9. Mapping of QTLs Associated with Biological Nitrogen Fixation Traits in Peanuts (Arachis hypogaea L.) Using an Interspecific Population Derived from the Cross between the Cultivated Species and Its Wild Ancestors.
    Nzepang DT, Gully D, Nguepjop JR, Zaiya Zazou A, Tossim HA, Sambou A, Rami JF, Hocher V, Fall S, Svistoonoff S, Fonceka D.
    Genes (Basel); 2023 Mar 26; 14(4):. PubMed ID: 37107555
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut.
    Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, Chen CY, Wang C, He G, Liang Z, Ma X, Li Z, Tang Y, Wang Y, Li K, Ning L, Zhang H, Zhao K, Li X, Yu H, Lei Y, Wang M, Ma L, Zheng H, Zhang Y, Zhang J, Hu W, Chen ZJ.
    Adv Sci (Weinh); 2020 Feb 26; 7(4):1901672. PubMed ID: 32099754
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid.
    Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF.
    BMC Plant Biol; 2009 Aug 03; 9():103. PubMed ID: 19650911
    [Abstract] [Full Text] [Related]

  • 16. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut.
    Guo Y, Khanal S, Tang S, Bowers JE, Heesacker AF, Khalilian N, Nagy ED, Zhang D, Taylor CA, Stalker HT, Ozias-Akins P, Knapp SJ.
    BMC Genomics; 2012 Nov 10; 13():608. PubMed ID: 23140574
    [Abstract] [Full Text] [Related]

  • 17. Spontaneous generation of diversity in Arachis neopolyploids (Arachis ipaënsis × Arachis duranensis)4x replays the early stages of peanut evolution.
    Leal-Bertioli SCM, Nascimento EFMB, Chavarro MCF, Custódio AR, Hopkins MS, Moretzsohn MC, Bertioli DJ, Araújo ACG.
    G3 (Bethesda); 2021 Oct 19; 11(11):. PubMed ID: 34510200
    [Abstract] [Full Text] [Related]

  • 18. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross.
    Blair MW, Iriarte G, Beebe S.
    Theor Appl Genet; 2006 Apr 19; 112(6):1149-63. PubMed ID: 16432734
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.