These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 22343416
1. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP. Free Radic Biol Med; 2012 May 01; 52(9):1666-79. PubMed ID: 22343416 [Abstract] [Full Text] [Related]
2. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Corbett J, Kadiiska MB, Waalkes MP, Diehl AM, Mason RP. J Hepatol; 2013 Apr 01; 58(4):778-84. PubMed ID: 23207144 [Abstract] [Full Text] [Related]
3. Deficiency of nicotinamide adenine dinucleotide phosphate, reduced form oxidase enhances hepatocellular injury but attenuates fibrosis after chronic carbon tetrachloride administration. Aram G, Potter JJ, Liu X, Wang L, Torbenson MS, Mezey E. Hepatology; 2009 Mar 01; 49(3):911-9. PubMed ID: 19072832 [Abstract] [Full Text] [Related]
4. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity. Das S, Kumar A, Seth RK, Tokar EJ, Kadiiska MB, Waalkes MP, Mason RP, Chatterjee S. Toxicol Appl Pharmacol; 2013 Jun 15; 269(3):297-306. PubMed ID: 23438451 [Abstract] [Full Text] [Related]
6. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Am J Physiol Gastrointest Liver Physiol; 2013 Dec 15; 305(12):G950-63. PubMed ID: 24157968 [Abstract] [Full Text] [Related]
7. Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Dattaroy D, Seth RK, Das S, Alhasson F, Chandrashekaran V, Michelotti G, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Am J Physiol Gastrointest Liver Physiol; 2016 Apr 01; 310(7):G510-25. PubMed ID: 26718771 [Abstract] [Full Text] [Related]
10. Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes. Zhang C, Hu JJ, Xia M, Boini KM, Brimson C, Li PL. Biochim Biophys Acta; 2010 Apr 01; 1803(4):482-91. PubMed ID: 20036696 [Abstract] [Full Text] [Related]
11. PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Frey RS, Rahman A, Kefer JC, Minshall RD, Malik AB. Circ Res; 2002 May 17; 90(9):1012-9. PubMed ID: 12016268 [Abstract] [Full Text] [Related]
12. Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle. Kojima S, Negishi Y, Tsukimoto M, Takenouchi T, Kitani H, Takeda K. Toxicology; 2014 Jul 03; 321():13-20. PubMed ID: 24685903 [Abstract] [Full Text] [Related]
13. Exogenous PP2A inhibitor exacerbates the progression of nonalcoholic fatty liver disease via NOX2-dependent activation of miR21. Albadrani M, Seth RK, Sarkar S, Kimono D, Mondal A, Bose D, Porter DE, Scott GI, Brooks B, Raychoudhury S, Nagarkatti M, Nagarkatti P, Jule Y, Diehl AM, Chatterjee S. Am J Physiol Gastrointest Liver Physiol; 2019 Oct 01; 317(4):G408-G428. PubMed ID: 31393787 [Abstract] [Full Text] [Related]
14. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Wang S, Zhang M, Liang B, Xu J, Xie Z, Liu C, Viollet B, Yan D, Zou MH. Circ Res; 2010 Apr 02; 106(6):1117-28. PubMed ID: 20167927 [Abstract] [Full Text] [Related]
15. Time course investigation of PPARalpha- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression. Woods CG, Kosyk O, Bradford BU, Ross PK, Burns AM, Cunningham ML, Qu P, Ibrahim JG, Rusyn I. Toxicol Appl Pharmacol; 2007 Dec 15; 225(3):267-77. PubMed ID: 17950772 [Abstract] [Full Text] [Related]
16. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis. Musicki B, Liu T, Sezen SF, Burnett AL. J Sex Med; 2012 Aug 15; 9(8):1980-7. PubMed ID: 22620981 [Abstract] [Full Text] [Related]
17. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. Huang WY, Lin S, Chen HY, Chen YP, Chen TY, Hsu KS, Wu HM. J Neuroinflammation; 2018 May 12; 15(1):140. PubMed ID: 29753328 [Abstract] [Full Text] [Related]
18. Advanced oxidation protein products induce inflammatory response in fibroblast-like synoviocytes through NADPH oxidase -dependent activation of NF-κB. Zheng S, Zhong ZM, Qin S, Chen GX, Wu Q, Zeng JH, Ye WB, Li W, Yuan K, Yao L, Chen JT. Cell Physiol Biochem; 2013 May 12; 32(4):972-85. PubMed ID: 24107363 [Abstract] [Full Text] [Related]
19. Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Zhou H, Zhang F, Chen SH, Zhang D, Wilson B, Hong JS, Gao HM. Free Radic Biol Med; 2012 Jan 15; 52(2):303-13. PubMed ID: 22094225 [Abstract] [Full Text] [Related]
20. Cardiac contractile dysfunction in Lep/Lep obesity is accompanied by NADPH oxidase activation, oxidative modification of sarco(endo)plasmic reticulum Ca2+-ATPase and myosin heavy chain isozyme switch. Li SY, Yang X, Ceylan-Isik AF, Du M, Sreejayan N, Ren J. Diabetologia; 2006 Jun 15; 49(6):1434-46. PubMed ID: 16612592 [Abstract] [Full Text] [Related] Page: [Next] [New Search]