These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


481 related items for PubMed ID: 22343465

  • 1. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F.
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [Abstract] [Full Text] [Related]

  • 2. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M, Dupont S, Thorndyke MC, Melzner F.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049
    [Abstract] [Full Text] [Related]

  • 3. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris.
    Miles H, Widdicombe S, Spicer JI, Hall-Spencer J.
    Mar Pollut Bull; 2007 Jan; 54(1):89-96. PubMed ID: 17083950
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST.
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):331-40. PubMed ID: 21742050
    [Abstract] [Full Text] [Related]

  • 6. Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris.
    Lacoue-Labarthe T, Réveillac E, Oberhänsli F, Teyssié JL, Jeffree R, Gattuso JP.
    Aquat Toxicol; 2011 Sep; 105(1-2):166-76. PubMed ID: 21718660
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH.
    Dorey N, Lançon P, Thorndyke M, Dupont S.
    Glob Chang Biol; 2013 Nov; 19(11):3355-67. PubMed ID: 23744556
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Elevated seawater levels of CO(2) change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas.
    Hammer KM, Pedersen SA, Størseth TR.
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Sep; 7(3):292-302. PubMed ID: 22763285
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.
    Todgham AE, Hofmann GE.
    J Exp Biol; 2009 Aug; 212(Pt 16):2579-94. PubMed ID: 19648403
    [Abstract] [Full Text] [Related]

  • 13. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification.
    Lee HG, Stumpp M, Yan JJ, Tseng YC, Heinzel S, Hu MY.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [Abstract] [Full Text] [Related]

  • 14. Euechinoidea and Cidaroidea respond differently to ocean acidification.
    Collard M, Dery A, Dehairs F, Dubois P.
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Aug; 174():45-55. PubMed ID: 24786105
    [Abstract] [Full Text] [Related]

  • 15. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE.
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():33-42. PubMed ID: 25773301
    [Abstract] [Full Text] [Related]

  • 16. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.
    Yuan X, Shao S, Yang X, Yang D, Xu Q, Zong H, Liu S.
    Environ Sci Pollut Res Int; 2016 May; 23(9):8453-61. PubMed ID: 26782325
    [Abstract] [Full Text] [Related]

  • 17. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress.
    Wang Y, Li L, Hu M, Lu W.
    Sci Total Environ; 2015 May 01; 514():261-72. PubMed ID: 25666286
    [Abstract] [Full Text] [Related]

  • 18. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).
    Chen WY, Lin HC.
    Environ Sci Pollut Res Int; 2018 May 01; 25(13):12947-12956. PubMed ID: 29478168
    [Abstract] [Full Text] [Related]

  • 19. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?
    Collard M, De Ridder C, David B, Dehairs F, Dubois P.
    Glob Chang Biol; 2015 Feb 01; 21(2):605-17. PubMed ID: 25270127
    [Abstract] [Full Text] [Related]

  • 20. Metal accumulation from dietary exposure in the sea urchin, Strongylocentrotus droebachiensis.
    Bielmyer GK, Jarvis TA, Harper BT, Butler B, Rice L, Ryan S, McLoughlin P.
    Arch Environ Contam Toxicol; 2012 Jul 01; 63(1):86-94. PubMed ID: 22402781
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.