These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
334 related items for PubMed ID: 22343827
1. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Li PZ, Aranishi K, Xu Q. Chem Commun (Camb); 2012 Mar 28; 48(26):3173-5. PubMed ID: 22343827 [Abstract] [Full Text] [Related]
2. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. Sun D, Mazumder V, Metin Ö, Sun S. ACS Nano; 2011 Aug 23; 5(8):6458-64. PubMed ID: 21766875 [Abstract] [Full Text] [Related]
3. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Xi P, Chen F, Xie G, Ma C, Liu H, Shao C, Wang J, Xu Z, Xu X, Zeng Z. Nanoscale; 2012 Sep 21; 4(18):5597-601. PubMed ID: 22732933 [Abstract] [Full Text] [Related]
4. Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. Akbayrak S, Ozkar S. ACS Appl Mater Interfaces; 2012 Nov 21; 4(11):6302-10. PubMed ID: 23113804 [Abstract] [Full Text] [Related]
6. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts. Robertson AP, Suter R, Chabanne L, Whittell GR, Manners I. Inorg Chem; 2011 Dec 19; 50(24):12680-91. PubMed ID: 22103654 [Abstract] [Full Text] [Related]
7. Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane. Cao CY, Chen CQ, Li W, Song WG, Cai W. ChemSusChem; 2010 Nov 22; 3(11):1241-4. PubMed ID: 21031496 [No Abstract] [Full Text] [Related]
8. The synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage. Zhong DC, Aranishi K, Singh AK, Demirci UB, Xu Q. Chem Commun (Camb); 2012 Dec 21; 48(98):11945-7. PubMed ID: 23064157 [Abstract] [Full Text] [Related]
9. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. Zhu QL, Li J, Xu Q. J Am Chem Soc; 2013 Jul 17; 135(28):10210-3. PubMed ID: 23805877 [Abstract] [Full Text] [Related]
10. Utilization of smart hydrogel-metal composites as catalysis media. Sahiner N, Butun S, Ozay O, Dibek B. J Colloid Interface Sci; 2012 May 01; 373(1):122-8. PubMed ID: 21937055 [Abstract] [Full Text] [Related]
11. The catalytic dehydrogenation of ammonia-borane involving an unexpected hydrogen transfer to ligated carbene and subsequent carbon-hydrogen activation. Yang X, Hall MB. J Am Chem Soc; 2008 Feb 13; 130(6):1798-9. PubMed ID: 18211066 [No Abstract] [Full Text] [Related]
12. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. Yang L, Luo W, Cheng G. ACS Appl Mater Interfaces; 2013 Aug 28; 5(16):8231-40. PubMed ID: 23927435 [Abstract] [Full Text] [Related]
13. Carbon Nanotubes as Support in the Platinum-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane. Chen W, Duan X, Qian G, Chen D, Zhou X. ChemSusChem; 2015 Sep 07; 8(17):2927-31. PubMed ID: 26059799 [Abstract] [Full Text] [Related]
14. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Yan JM, Zhang XB, Han S, Shioyama H, Xu Q. Inorg Chem; 2009 Aug 03; 48(15):7389-93. PubMed ID: 19722696 [Abstract] [Full Text] [Related]
15. Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane. Wang X, Liu D, Song S, Zhang H. Chem Commun (Camb); 2012 Oct 21; 48(82):10207-9. PubMed ID: 22968230 [Abstract] [Full Text] [Related]
16. Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. Jiang HL, Umegaki T, Akita T, Zhang XB, Haruta M, Xu Q. Chemistry; 2010 Mar 08; 16(10):3132-7. PubMed ID: 20127771 [Abstract] [Full Text] [Related]
17. B-N polymer embedded iron(0) nanoparticles as highly active and long lived catalyst in the dehydrogenation of ammonia borane. Duman S, Metin O, Ozkar S. J Nanosci Nanotechnol; 2013 Jul 08; 13(7):4954-61. PubMed ID: 23901516 [Abstract] [Full Text] [Related]
18. Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. Sanyal U, Demirci UB, Jagirdar BR, Miele P. ChemSusChem; 2011 Dec 16; 4(12):1731-9. PubMed ID: 22069163 [Abstract] [Full Text] [Related]
19. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y. Inorg Chem; 2011 Mar 21; 50(6):2046-8. PubMed ID: 21268607 [Abstract] [Full Text] [Related]