These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 22344442

  • 1. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants.
    Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JA, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D.
    Science; 2012 Feb 17; 335(6070):843-7. PubMed ID: 22344442
    [Abstract] [Full Text] [Related]

  • 2. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D.
    Curr Biol; 2006 Dec 05; 16(23):2320-5. PubMed ID: 17141613
    [Abstract] [Full Text] [Related]

  • 3. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C, Brinkmann H, Petersen J.
    Mol Biol Evol; 2007 Aug 05; 24(8):1611-21. PubMed ID: 17443012
    [Abstract] [Full Text] [Related]

  • 4. Does the Cyanophora paradoxa genome revise our view on the evolution of photorespiratory enzymes?
    Kern R, Eisenhut M, Bauwe H, Weber AP, Hagemann M.
    Plant Biol (Stuttg); 2013 Jul 05; 15(4):759-68. PubMed ID: 23551942
    [Abstract] [Full Text] [Related]

  • 5. Algal genomics: exploring the imprint of endosymbiosis.
    Archibald JM.
    Curr Biol; 2006 Dec 19; 16(24):R1033-5. PubMed ID: 17174910
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis.
    Facchinelli F, Pribil M, Oster U, Ebert NJ, Bhattacharya D, Leister D, Weber AP.
    Planta; 2013 Feb 19; 237(2):637-51. PubMed ID: 23212214
    [Abstract] [Full Text] [Related]

  • 8. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A, Bhattacharya D.
    Mol Biol Evol; 2007 Nov 19; 24(11):2358-61. PubMed ID: 17827169
    [Abstract] [Full Text] [Related]

  • 9. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements.
    Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW.
    Eukaryot Cell; 2006 Sep 19; 5(9):1517-31. PubMed ID: 16963634
    [Abstract] [Full Text] [Related]

  • 10. Transketolase from Cyanophora paradoxa: in vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis.
    Ma Y, Jakowitsch J, Deusch O, Henze K, Martin W, Löffelhardt W.
    J Eukaryot Microbiol; 2009 Sep 19; 56(6):568-76. PubMed ID: 19883445
    [Abstract] [Full Text] [Related]

  • 11. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T.
    Mol Biol Evol; 2008 Apr 19; 25(4):748-61. PubMed ID: 18222943
    [Abstract] [Full Text] [Related]

  • 12. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF.
    Curr Biol; 2005 Jul 26; 15(14):1325-30. PubMed ID: 16051178
    [Abstract] [Full Text] [Related]

  • 13. Analysis of an improved Cyanophora paradoxa genome assembly.
    Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U, Chan CX, Wagner NE, Yoon HS, Weber APM, Bhattacharya D.
    DNA Res; 2019 Aug 01; 26(4):287-299. PubMed ID: 31098614
    [Abstract] [Full Text] [Related]

  • 14. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B, Hoef-Emden K, Melkonian M.
    BMC Evol Biol; 2008 Jul 15; 8():203. PubMed ID: 18627593
    [Abstract] [Full Text] [Related]

  • 15. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida.
    Smith DR, Jackson CJ, Reyes-Prieto A.
    Mol Phylogenet Evol; 2014 Oct 15; 79():380-4. PubMed ID: 25017510
    [Abstract] [Full Text] [Related]

  • 16. Plastid establishment did not require a chlamydial partner.
    Domman D, Horn M, Embley TM, Williams TA.
    Nat Commun; 2015 Mar 11; 6():6421. PubMed ID: 25758953
    [Abstract] [Full Text] [Related]

  • 17. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M, Green BR.
    Mol Biol Evol; 2005 Dec 11; 22(12):2343-53. PubMed ID: 16093570
    [Abstract] [Full Text] [Related]

  • 18. Phylogeny of Calvin cycle enzymes supports Plantae monophyly.
    Reyes-Prieto A, Bhattacharya D.
    Mol Phylogenet Evol; 2007 Oct 11; 45(1):384-91. PubMed ID: 17482838
    [No Abstract] [Full Text] [Related]

  • 19. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.
    Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, Tandeau de Marsac N, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Pühler A, Martin WF.
    Genome Biol Evol; 2013 Oct 11; 5(1):31-44. PubMed ID: 23221676
    [Abstract] [Full Text] [Related]

  • 20. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    Huang J, Gogarten JP.
    Genome Biol; 2007 Oct 11; 8(6):R99. PubMed ID: 17547748
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.