These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


90 related items for PubMed ID: 22345525

  • 1. High-frequency electrical stimulation of cardiac cells and application to artifact reduction.
    Dura B, Chen MQ, Inan OT, Kovacs GT, Giovangrandi L.
    IEEE Trans Biomed Eng; 2012 May; 59(5):1381-90. PubMed ID: 22345525
    [Abstract] [Full Text] [Related]

  • 2. A closed-loop electrical stimulation system for cardiac cell cultures.
    Whittington RH, Giovangrandi L, Kovacs GT.
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1261-70. PubMed ID: 16041989
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Methods for isolating extracellular action potentials and removing stimulus artifacts from microelectrode recordings of neurons requiring minimal operator intervention.
    Montgomery EB, Gale JT, Huang H.
    J Neurosci Methods; 2005 May 15; 144(1):107-25. PubMed ID: 15848245
    [Abstract] [Full Text] [Related]

  • 7. Stimulation of isolated ventricular myocytes within an open architecture microarray.
    Klauke N, Smith GL, Cooper JM.
    IEEE Trans Biomed Eng; 2005 Mar 15; 52(3):531-8. PubMed ID: 15759583
    [Abstract] [Full Text] [Related]

  • 8. Stimulation artifact in surface EMG signal: effect of the stimulation waveform, detection system, and current amplitude using hybrid stimulation technique.
    Mandrile F, Farina D, Pozzo M, Merletti R.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec 15; 11(4):407-15. PubMed ID: 14960117
    [Abstract] [Full Text] [Related]

  • 9. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C, Richardson R, Huang CQ, Milojevic D, Cowan R, Shepherd R.
    J Neural Eng; 2004 Dec 15; 1(4):218-27. PubMed ID: 15876642
    [Abstract] [Full Text] [Related]

  • 10. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ.
    J Neurophysiol; 2006 Jun 15; 95(6):3311-27. PubMed ID: 16436479
    [Abstract] [Full Text] [Related]

  • 11. Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems.
    Shadmani A, Viswam V, Chen Y, Bounik R, Dragas J, Radivojevic M, Geissler S, Sitnikov S, Muller J, Hierlemann A.
    IEEE Trans Biomed Eng; 2019 Sep 15; 66(9):2481-2490. PubMed ID: 30605090
    [Abstract] [Full Text] [Related]

  • 12. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ, Rizzo JF.
    Exp Eye Res; 2006 Aug 15; 83(2):367-73. PubMed ID: 16616739
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF, Liu JQ, Yang B, Li KY, Yang CS.
    Biomed Microdevices; 2012 Apr 15; 14(2):367-73. PubMed ID: 22124887
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED, Leung J, Wood S, Nguyen CV.
    Nanotechnology; 2010 Mar 26; 21(12):125101. PubMed ID: 20182008
    [Abstract] [Full Text] [Related]

  • 17. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants.
    Kasi H, Bertsch A, Guyomard JL, Kolomiets B, Picaud S, Pelizzone M, Renaud P.
    Med Eng Phys; 2011 Jul 26; 33(6):755-63. PubMed ID: 21354850
    [Abstract] [Full Text] [Related]

  • 18. Single-chip microelectronic system to interface with living cells.
    Heer F, Hafizovic S, Ugniwenko T, Frey U, Franks W, Perriard E, Perriard JC, Blau A, Ziegler C, Hierlemann A.
    Biosens Bioelectron; 2007 May 15; 22(11):2546-53. PubMed ID: 17097869
    [Abstract] [Full Text] [Related]

  • 19. Fast oscillations trigger bursts of action potentials in neocortical neurons in vitro: a quasi-white-noise analysis study.
    Schindler KA, Goodman PH, Wieser HG, Douglas RJ.
    Brain Res; 2006 Sep 19; 1110(1):201-10. PubMed ID: 16879807
    [Abstract] [Full Text] [Related]

  • 20. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances.
    Johnson MD, Otto KJ, Kipke DR.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun 19; 13(2):160-5. PubMed ID: 16003894
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.