These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 22352876
41. Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S. J Phys Chem B; 2008 Dec 04; 112(48):15269-74. PubMed ID: 18989905 [Abstract] [Full Text] [Related]
42. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes. Li W, Liu Q, Liu L. Langmuir; 2014 Oct 28; 30(42):12619-26. PubMed ID: 25262768 [Abstract] [Full Text] [Related]
43. Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability. Zhao C, Zheng J. Biomacromolecules; 2011 Nov 14; 12(11):4071-9. PubMed ID: 21972885 [Abstract] [Full Text] [Related]
44. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Inoue Y, Ishihara K. Colloids Surf B Biointerfaces; 2010 Nov 01; 81(1):350-7. PubMed ID: 20705439 [Abstract] [Full Text] [Related]
45. Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly(N-isopropyl acrylamide). Chang Y, Chen WY, Yandi W, Shih YJ, Chu WL, Liu YL, Chu CW, Ruaan RC, Higuchi A. Biomacromolecules; 2009 Aug 10; 10(8):2092-100. PubMed ID: 19572632 [Abstract] [Full Text] [Related]
46. Blood compatibility of surfaces with superlow protein adsorption. Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S. Biomaterials; 2008 Nov 10; 29(32):4285-91. PubMed ID: 18722010 [Abstract] [Full Text] [Related]
47. Influence of the molecular structure of surface-attached poly(N-alkyl acrylamide) coatings on the interaction of surfaces with proteins, cells and blood platelets. Pandiyarajan CK, Prucker O, Zieger B, Rühe J. Macromol Biosci; 2013 Jul 10; 13(7):873-84. PubMed ID: 23596084 [Abstract] [Full Text] [Related]
48. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Zhang Z, Cheng G, Carr LR, Vaisocherová H, Chen S, Jiang S. Biomaterials; 2008 Dec 10; 29(36):4719-25. PubMed ID: 18819709 [Abstract] [Full Text] [Related]
49. Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Chang Y, Chen S, Zhang Z, Jiang S. Langmuir; 2006 Feb 28; 22(5):2222-6. PubMed ID: 16489810 [Abstract] [Full Text] [Related]
50. Surface chemistry to minimize fouling from blood-based fluids. Blaszykowski C, Sheikh S, Thompson M. Chem Soc Rev; 2012 Sep 07; 41(17):5599-612. PubMed ID: 22772072 [Abstract] [Full Text] [Related]
51. Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Xia Y, Adibnia V, Huang R, Murschel F, Faivre J, Xie G, Olszewski M, De Crescenzo G, Qi W, He Z, Su R, Matyjaszewski K, Banquy X. Angew Chem Int Ed Engl; 2019 Jan 28; 58(5):1308-1314. PubMed ID: 30426644 [Abstract] [Full Text] [Related]
52. Self-Generating and Self-Renewing Zwitterionic Polymer Surfaces for Marine Anti-Biofouling. Dai G, Xie Q, Ai X, Ma C, Zhang G. ACS Appl Mater Interfaces; 2019 Nov 06; 11(44):41750-41757. PubMed ID: 31603306 [Abstract] [Full Text] [Related]
53. Trimethylamine N-oxide-derived zwitterionic polymers: A new class of ultralow fouling bioinspired materials. Li B, Jain P, Ma J, Smith JK, Yuan Z, Hung HC, He Y, Lin X, Wu K, Pfaendtner J, Jiang S. Sci Adv; 2019 Jun 06; 5(6):eaaw9562. PubMed ID: 31214655 [Abstract] [Full Text] [Related]
54. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Lísalová H, Brynda E, Houska M, Víšová I, Mrkvová K, Song XC, Gedeonová E, Surman F, Riedel T, Pop-Georgievski O, Homola J. Anal Chem; 2017 Mar 21; 89(6):3524-3531. PubMed ID: 28233990 [Abstract] [Full Text] [Related]
55. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Langmuir; 2010 Mar 02; 26(5):3522-30. PubMed ID: 19947616 [Abstract] [Full Text] [Related]
56. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Fan X, Lin L, Messersmith PB. Biomacromolecules; 2006 Aug 02; 7(8):2443-8. PubMed ID: 16903694 [Abstract] [Full Text] [Related]
57. Chemical and physical factors in design of antibiofouling polymer coatings. Eshet I, Freger V, Kasher R, Herzberg M, Lei J, Ulbricht M. Biomacromolecules; 2011 Jul 11; 12(7):2681-5. PubMed ID: 21615083 [Abstract] [Full Text] [Related]
58. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Sagnella S, Mai-Ngam K. Colloids Surf B Biointerfaces; 2005 May 10; 42(2):147-55. PubMed ID: 15833667 [Abstract] [Full Text] [Related]
59. Bioinspired catecholic copolymers for antifouling surface coatings. Cho JH, Shanmuganathan K, Ellison CJ. ACS Appl Mater Interfaces; 2013 May 10; 5(9):3794-802. PubMed ID: 23544666 [Abstract] [Full Text] [Related]
60. Lateral control of protein adsorption on charged polymer gradients. Ekblad T, Andersson O, Tai FI, Ederth T, Liedberg B. Langmuir; 2009 Apr 09; 25(6):3755-62. PubMed ID: 19708252 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]