These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 22353549
1. Xeroderma pigmentosum group F protein binds to Eg5 and is required for proper mitosis: implications for XP-F and XFE. Tan LJ, Saijo M, Kuraoka I, Narita T, Takahata C, Iwai S, Tanaka K. Genes Cells; 2012 Mar; 17(3):173-85. PubMed ID: 22353549 [Abstract] [Full Text] [Related]
2. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients. Ahmad A, Enzlin JH, Bhagwat NR, Wijgers N, Raams A, Appledoorn E, Theil AF, J Hoeijmakers JH, Vermeulen W, J Jaspers NG, Schärer OD, Niedernhofer LJ. PLoS Genet; 2010 Mar 05; 6(3):e1000871. PubMed ID: 20221251 [Abstract] [Full Text] [Related]
3. Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Bergstralh DT, Sekelsky J. Trends Genet; 2008 Feb 05; 24(2):70-6. PubMed ID: 18192062 [Abstract] [Full Text] [Related]
4. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Matsumura Y, Nishigori C, Yagi T, Imamura S, Takebe H. Hum Mol Genet; 1998 Jun 05; 7(6):969-74. PubMed ID: 9580660 [Abstract] [Full Text] [Related]
5. Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis. Chen Z, Xu XS, Harrison J, Wang G. Biochem J; 2004 Apr 01; 379(Pt 1):71-8. PubMed ID: 14728600 [Abstract] [Full Text] [Related]
6. Complete restoration of normal DNA repair characteristics in group F xeroderma pigmentosum cells by over-expression of transfected XPF cDNA. Yagi T, Matsumura Y, Sato M, Nishigori C, Mori T, Sijbers AM, Takebe H. Carcinogenesis; 1998 Jan 01; 19(1):55-60. PubMed ID: 9472693 [Abstract] [Full Text] [Related]
7. Mapping of interaction domains between human repair proteins ERCC1 and XPF. de Laat WL, Sijbers AM, Odijk H, Jaspers NG, Hoeijmakers JH. Nucleic Acids Res; 1998 Sep 15; 26(18):4146-52. PubMed ID: 9722633 [Abstract] [Full Text] [Related]
8. The knock-down of ERCC1 but not of XPF causes multinucleation. Rageul J, Frëmin C, Ezan F, Baffet G, Langouët S. DNA Repair (Amst); 2011 Sep 05; 10(9):978-90. PubMed ID: 21839691 [Abstract] [Full Text] [Related]
9. Deep intronic founder mutations identified in the ERCC4/XPF gene are potential therapeutic targets for a high-frequency form of xeroderma pigmentosum. Senju C, Nakazawa Y, Oso T, Shimada M, Kato K, Matsuse M, Tsujimoto M, Masaki T, Miyazaki Y, Fukushima S, Tateishi S, Utani A, Murota H, Tanaka K, Mitsutake N, Moriwaki S, Nishigori C, Ogi T. Proc Natl Acad Sci U S A; 2023 Jul 04; 120(27):e2217423120. PubMed ID: 37364129 [Abstract] [Full Text] [Related]
10. Sensitivity of group F xeroderma pigmentosum cells to UV and mitomycin C relative to levels of XPF and ERCC1 overexpression. Yagi T, Katsuya A, Koyano A, Takebe H. Mutagenesis; 1998 Nov 04; 13(6):595-9. PubMed ID: 9862190 [Abstract] [Full Text] [Related]
11. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF. Lehmann J, Seebode C, Smolorz S, Schubert S, Emmert S. Cell Mol Life Sci; 2017 Jun 04; 74(11):2081-2094. PubMed ID: 28130555 [Abstract] [Full Text] [Related]
12. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Kirschner K, Melton DW. Anticancer Res; 2010 Sep 04; 30(9):3223-32. PubMed ID: 20944091 [Abstract] [Full Text] [Related]
13. The age-related expression decline of ERCC1 and XPF for forensic age estimation: A preliminary study. Deng XD, Gao Q, Zhang W, Zhang B, Ma Y, Zhang LX, Muer C, Xie Y, Liu Y. J Forensic Leg Med; 2017 Jul 04; 49():15-19. PubMed ID: 28486142 [Abstract] [Full Text] [Related]
14. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links. Clingen PH, Arlett CF, Hartley JA, Parris CN. Exp Cell Res; 2007 Feb 15; 313(4):753-60. PubMed ID: 17188678 [Abstract] [Full Text] [Related]
15. Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. Lan L, Hayashi T, Rabeya RM, Nakajima S, Kanno Si, Takao M, Matsunaga T, Yoshino M, Ichikawa M, Riele Ht, Tsuchiya S, Tanaka K, Yasui A. DNA Repair (Amst); 2004 Feb 03; 3(2):135-43. PubMed ID: 14706347 [Abstract] [Full Text] [Related]
16. Functional Comparison of XPF Missense Mutations Associated to Multiple DNA Repair Disorders. Marín M, Ramírez MJ, Carmona MA, Jia N, Ogi T, Bogliolo M, Surrallés J. Genes (Basel); 2019 Jan 17; 10(1):. PubMed ID: 30658521 [Abstract] [Full Text] [Related]
17. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD. Cell; 1996 Sep 06; 86(5):811-22. PubMed ID: 8797827 [Abstract] [Full Text] [Related]
18. The ERCC1 and ERCC4 (XPF) genes and gene products. Manandhar M, Boulware KS, Wood RD. Gene; 2015 Sep 15; 569(2):153-61. PubMed ID: 26074087 [Abstract] [Full Text] [Related]
19. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. van den Heuvel D, Kim M, Wondergem AP, van der Meer PJ, Witkamp M, Lambregtse F, Kim HS, Kan F, Apelt K, Kragten A, González-Prieto R, Vertegaal ACO, Yeo JE, Kim BG, van Doorn R, Schärer OD, Luijsterburg MS. Proc Natl Acad Sci U S A; 2023 Mar 14; 120(11):e2208860120. PubMed ID: 36893274 [Abstract] [Full Text] [Related]
20. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Sabatella M, Theil AF, Ribeiro-Silva C, Slyskova J, Thijssen K, Voskamp C, Lans H, Vermeulen W. Nucleic Acids Res; 2018 Oct 12; 46(18):9563-9577. PubMed ID: 30165384 [Abstract] [Full Text] [Related] Page: [Next] [New Search]