These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 22357017
1. A simple master-slave control mapping setup to learn robot-assisted surgery manipulation. Punak S, Kurenov S. Stud Health Technol Inform; 2012; 173():356-8. PubMed ID: 22357017 [Abstract] [Full Text] [Related]
2. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery. Abeykoon AM, Ohnishi K. Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375 [Abstract] [Full Text] [Related]
4. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot. Hu Z, Yoon CH, Park SB, Jo YH. Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414 [Abstract] [Full Text] [Related]
5. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot. Lee DH, Choi J, Park JW, Bach DJ, Song SJ, Kim YH, Jo Y, Sun K. ASAIO J; 2009 Jul; 55(1):83-5. PubMed ID: 19092664 [Abstract] [Full Text] [Related]
7. Output control of da Vinci surgical system's surgical graspers. Johnson PJ, Schmidt DE, Duvvuri U. J Surg Res; 2014 Jan; 186(1):56-62. PubMed ID: 23968806 [Abstract] [Full Text] [Related]
9. Development of a force-reflecting robotic platform for cardiac catheter navigation. Park JW, Choi J, Pak HN, Song SJ, Lee JC, Park Y, Shin SM, Sun K. Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046 [Abstract] [Full Text] [Related]
10. Research of the master-slave robot surgical system with the function of force feedback. Shi Y, Zhou C, Xie L, Chen Y, Jiang J, Zhang Z, Deng Z. Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095 [Abstract] [Full Text] [Related]
11. A system for simulation and monitoring of robot-assisted and navigation-assisted surgical interventions. (Part 1). Stien M, Hein A, Szymanski D, Lueth T. Stud Health Technol Inform; 2002 Dec; 85():501-3. PubMed ID: 15458140 [Abstract] [Full Text] [Related]
14. Manual accuracy in comparison with a miniature master slave device--preclinical evaluation for ear surgery. Runge A, Hofer M, Dittrich E, Neumuth T, Haase R, Strauss M, Dietz A, Lüth T, Strauss G. Stud Health Technol Inform; 2011 Dec; 163():524-30. PubMed ID: 21335850 [Abstract] [Full Text] [Related]
15. Effect of sensory substitution on suture manipulation forces for surgical teleoperation. Kitagawa M, Dokko D, Okamura AM, Bethea BT, Yuh DD. Stud Health Technol Inform; 2004 Dec; 98():157-63. PubMed ID: 15544263 [Abstract] [Full Text] [Related]
16. Preoperative planning system for surgical robotics setup with kinematics and haptics. Hayashibe M, Suzuki N, Hashizume M, Kakeji Y, Konishi K, Suzuki S, Hattori A. Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381 [Abstract] [Full Text] [Related]
17. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery. Hayashibe M, Suzuki N, Hattori A, Suzuki S, Konishi K, Kakeji Y, Hashizume M. Stud Health Technol Inform; 2005 Jan; 111():164-6. PubMed ID: 15718720 [Abstract] [Full Text] [Related]
18. From medical images to minimally invasive intervention: Computer assistance for robotic surgery. Lee SL, Lerotic M, Vitiello V, Giannarou S, Kwok KW, Visentini-Scarzanella M, Yang GZ. Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056 [Abstract] [Full Text] [Related]