These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
254 related items for PubMed ID: 22364521
1. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes. Akkahat P, Kiatkamjornwong S, Yusa S, Hoven VP, Iwasaki Y. Langmuir; 2012 Apr 03; 28(13):5872-81. PubMed ID: 22364521 [Abstract] [Full Text] [Related]
2. Clickable and Antifouling Platform of Poly[(propargyl methacrylate)-ran-(2-methacryloyloxyethyl phosphorylcholine)] for Biosensing Applications. Wiarachai O, Vilaivan T, Iwasaki Y, Hoven VP. Langmuir; 2016 Feb 02; 32(4):1184-94. PubMed ID: 26695478 [Abstract] [Full Text] [Related]
3. Introducing surface-tethered poly(acrylic acid) brushes as 3D functional thin film for biosensing applications. Akkahat P, Hoven VP. Colloids Surf B Biointerfaces; 2011 Aug 01; 86(1):198-205. PubMed ID: 21530190 [Abstract] [Full Text] [Related]
4. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Langmuir; 2010 Mar 02; 26(5):3522-30. PubMed ID: 19947616 [Abstract] [Full Text] [Related]
5. Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. Park J, Kurosawa S, Watanabe J, Ishihara K. Anal Chem; 2004 May 01; 76(9):2649-55. PubMed ID: 15117211 [Abstract] [Full Text] [Related]
6. Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Rodriguez-Emmenegger C, Avramenko OA, Brynda E, Skvor J, Alles AB. Biosens Bioelectron; 2011 Jul 15; 26(11):4545-51. PubMed ID: 21664120 [Abstract] [Full Text] [Related]
7. Thiolated 2-methacryloyloxyethyl phosphorylcholine for an antifouling biosensor platform. Goda T, Tabata M, Sanjoh M, Uchimura M, Iwasaki Y, Miyahara Y. Chem Commun (Camb); 2013 Oct 07; 49(77):8683-5. PubMed ID: 23949309 [Abstract] [Full Text] [Related]
10. Specific binding of immunoglobulin G with bioactive short peptides supported on antifouling copolymer layers for detection in quartz crystal microgravimetry and surface plasmon resonance. Zhang Y, Islam N, Carbonell RG, Rojas OJ. Anal Chem; 2013 Jan 15; 85(2):1106-13. PubMed ID: 23231671 [Abstract] [Full Text] [Related]
11. Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Feng W, Brash JL, Zhu S. Biomaterials; 2006 Feb 15; 27(6):847-55. PubMed ID: 16099496 [Abstract] [Full Text] [Related]
12. Anti-biofouling properties of a telomer brush with pendent glucosylurea groups. Kitano H, Hayashi A, Takakura H, Suzuki H, Kanayama N, Saruwatari Y. Langmuir; 2009 Aug 18; 25(16):9361-8. PubMed ID: 19518093 [Abstract] [Full Text] [Related]
13. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency. Akkahat P, Mekboonsonglarp W, Kiatkamjornwong S, Hoven VP. Langmuir; 2012 Mar 20; 28(11):5302-11. PubMed ID: 22329634 [Abstract] [Full Text] [Related]
14. Resistance of zwitterionic telomers accumulated on metal surfaces against nonspecific adsorption of proteins. Kitano H, Kawasaki A, Kawasaki H, Morokoshi S. J Colloid Interface Sci; 2005 Feb 15; 282(2):340-8. PubMed ID: 15589539 [Abstract] [Full Text] [Related]
15. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W, Gao X, McClung G, Zhu S, Ishihara K, Brash JL. Acta Biomater; 2011 Oct 15; 7(10):3692-9. PubMed ID: 21693202 [Abstract] [Full Text] [Related]
16. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Ishihara K, Oshida H, Endo Y, Ueda T, Watanabe A, Nakabayashi N. J Biomed Mater Res; 1992 Dec 15; 26(12):1543-52. PubMed ID: 1484061 [Abstract] [Full Text] [Related]
17. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Kang S, Lee M, Kang M, Noh M, Jeon J, Lee Y, Seo JH. Acta Biomater; 2016 Aug 15; 40():70-77. PubMed ID: 26961806 [Abstract] [Full Text] [Related]
18. Gold Nanorods Stabilized by Biocompatible and Multifunctional Zwitterionic Copolymer for Synergistic Cancer Therapy. Khunsuk PO, Chawalitpong S, Sawutdeechaikul P, Palaga T, Hoven VP. Mol Pharm; 2018 Jan 02; 15(1):164-174. PubMed ID: 29185337 [Abstract] [Full Text] [Related]
19. Tribological properties of hydrophilic polymer brushes under wet conditions. Kobayashi M, Takahara A. Chem Rec; 2010 Aug 02; 10(4):208-16. PubMed ID: 20533448 [Abstract] [Full Text] [Related]
20. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. Kawasaki Y, Iwasaki Y. J Biomater Sci Polym Ed; 2014 Aug 02; 25(9):895-906. PubMed ID: 24766535 [Abstract] [Full Text] [Related] Page: [Next] [New Search]