These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
383 related items for PubMed ID: 22364583
1. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G. J Proteome Res; 2012 Apr 06; 11(4):2178-92. PubMed ID: 22364583 [Abstract] [Full Text] [Related]
2. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL. Plant Physiol; 2009 Jul 06; 150(3):1434-49. PubMed ID: 19465579 [Abstract] [Full Text] [Related]
3. Depression of Fungal Polygalacturonase Activity in Solanum lycopersicum Contributes to Antagonistic Yeast-Mediated Fruit Immunity to Botrytis. Lu L, Ji L, Ma Q, Yang M, Li S, Tang Q, Qiao L, Li F, Guo Q, Wang C. J Agric Food Chem; 2019 Mar 27; 67(12):3293-3304. PubMed ID: 30785743 [Abstract] [Full Text] [Related]
4. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. Silva CJ, van den Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA, Wang D, Casteel CL, Seymour GB, Blanco-Ulate B. J Exp Bot; 2021 Mar 29; 72(7):2696-2709. PubMed ID: 33462583 [Abstract] [Full Text] [Related]
5. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit. Min D, Li F, Zhang X, Shu P, Cui X, Dong L, Ren C, Meng D, Li J. J Sci Food Agric; 2018 Aug 29; 98(10):3815-3822. PubMed ID: 29352462 [Abstract] [Full Text] [Related]
6. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. Dominguez PG, Conti G, Duffy T, Insani M, Alseekh S, Asurmendi S, Fernie AR, Carrari F. J Exp Bot; 2021 Sep 30; 72(18):6490-6509. PubMed ID: 34100923 [Abstract] [Full Text] [Related]
7. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Liu M, Zhang Z, Xu Z, Wang L, Chen C, Ren Z. Plant Cell Rep; 2021 Jan 30; 40(1):43-58. PubMed ID: 32990799 [Abstract] [Full Text] [Related]
8. Accumulation of anthocyanins in tomato skin extends shelf life. Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C. New Phytol; 2013 Nov 30; 200(3):650-655. PubMed ID: 24102530 [Abstract] [Full Text] [Related]
9. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, Labavitch JM, Powell AL. Proc Natl Acad Sci U S A; 2008 Jan 22; 105(3):859-64. PubMed ID: 18199833 [Abstract] [Full Text] [Related]
10. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Plant J; 2007 Dec 22; 52(6):1027-40. PubMed ID: 17916112 [Abstract] [Full Text] [Related]
11. Transient autophagy inhibition strengthened postharvest tomato (Solanum lycopersicum) resistance against Botrytis cinerea through curtailing ROS-induced programmed cell death. Ma Q, Li D, Ren Y, Chen Y, Huang J, Wu B, Wang Q, Luo Z. Food Chem; 2024 Oct 01; 454():139811. PubMed ID: 38820631 [Abstract] [Full Text] [Related]
12. E3 ligase SlCOP1-1 stabilizes transcription factor SlOpaque2 and enhances fruit resistance to Botrytis cinerea in tomato. Gao G, Zhou L, Liu J, Wang P, Gong P, Tian S, Qin G, Wang W, Wang Y. Plant Physiol; 2024 Oct 01; 196(2):1196-1213. PubMed ID: 39077783 [Abstract] [Full Text] [Related]
13. A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Shah P, Gutierrez-Sanchez G, Orlando R, Bergmann C. Proteomics; 2009 Jun 01; 9(11):3126-35. PubMed ID: 19526562 [Abstract] [Full Text] [Related]
14. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit. Silva CJ, Adaskaveg JA, Mesquida-Pesci SD, Ortega-Salazar IB, Pattathil S, Zhang L, Hahn MG, van Kan JAL, Cantu D, Powell ALT, Blanco-Ulate B. Plant Physiol; 2023 Jan 02; 191(1):575-590. PubMed ID: 36053186 [Abstract] [Full Text] [Related]
15. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus. Lin Y, Ruan H, Akutse KS, Lai B, Lin Y, Hou Y, Zhong F. J Agric Food Chem; 2019 Dec 11; 67(49):13706-13717. PubMed ID: 31693347 [Abstract] [Full Text] [Related]
16. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Seifi H, De Vleesschauwer D, Aziz A, Höfte M. Plant Signal Behav; 2014 Dec 11; 9(2):e27995. PubMed ID: 24521937 [Abstract] [Full Text] [Related]
17. Physiological and Proteomic Approaches to Address the Active Role of Botrytis cinerea Inoculation in Tomato Postharvest Ripening. Tzortzakis N. Microorganisms; 2019 Dec 11; 7(12):. PubMed ID: 31835786 [Abstract] [Full Text] [Related]
18. Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Wang W, Cai J, Wang P, Tian S, Qin G. Genome Biol; 2017 Mar 07; 18(1):47. PubMed ID: 28270225 [Abstract] [Full Text] [Related]
19. Comparative proteomic analysis of Botrytis cinerea secretome. Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR. J Proteome Res; 2009 Mar 07; 8(3):1123-30. PubMed ID: 19140674 [Abstract] [Full Text] [Related]
20. Hexaconazole Application Saves the Loss of Grey Mold Disease but Hinders Tomato Fruit Ripening in Healthy Plants. Deng Y, Liu R, Zheng M, Cai C, Diao J, Zhou Z. J Agric Food Chem; 2022 Apr 06; 70(13):3948-3957. PubMed ID: 35324179 [Abstract] [Full Text] [Related] Page: [Next] [New Search]