These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


535 related items for PubMed ID: 22366600

  • 21. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis.
    Braunwald T, Schwemmlein L, Graeff-Hönninger S, French WT, Hernandez R, Holmes WE, Claupein W.
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6581-8. PubMed ID: 23728238
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn stover hydrolysate for advanced biofuel production.
    Ruan Z, Zanotti M, Archer S, Liao W, Liu Y.
    Bioresour Technol; 2014 Jul; 163():12-7. PubMed ID: 24768942
    [Abstract] [Full Text] [Related]

  • 25. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.
    Yen HW, Chang JT.
    J Biosci Bioeng; 2015 May; 119(5):580-4. PubMed ID: 25454603
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry.
    Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW.
    Bioresour Technol; 2013 May; 135():357-64. PubMed ID: 23177209
    [Abstract] [Full Text] [Related]

  • 29. Enhancement of cell growth rate by light irradiation in the cultivation of Rhodotorula glutinis.
    Yen HW, Zhang Z.
    Bioresour Technol; 2011 Oct; 102(19):9279-81. PubMed ID: 21757336
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production.
    Gong Z, Zhou W, Shen H, Zhao ZK, Yang Z, Yan J, Zhao M.
    Bioresour Technol; 2016 Nov; 219():552-558. PubMed ID: 27529520
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis.
    Yen HW, Zhang Z.
    J Biosci Bioeng; 2011 Jul; 112(1):71-4. PubMed ID: 21498112
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass.
    Rasmey AM, Tawfik MA, Abdel-Kareem MM.
    J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1.
    Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA.
    Bioresour Technol; 2015 Dec; 197():91-8. PubMed ID: 26318927
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.