These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


778 related items for PubMed ID: 22370175

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo.
    Lü LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP.
    ACS Appl Mater Interfaces; 2013 Jan 23; 5(2):319-30. PubMed ID: 23267692
    [Abstract] [Full Text] [Related]

  • 3. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
    Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L.
    J Biomed Mater Res A; 2012 Nov 23; 100(11):3008-19. PubMed ID: 22700476
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells.
    Chen JP, Chang YS.
    Colloids Surf B Biointerfaces; 2011 Aug 01; 86(1):169-75. PubMed ID: 21514800
    [Abstract] [Full Text] [Related]

  • 7. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S.
    ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3499-515. PubMed ID: 26756224
    [Abstract] [Full Text] [Related]

  • 8. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL.
    J Tissue Eng Regen Med; 2012 Nov 10; 6(10):e24-30. PubMed ID: 22451140
    [Abstract] [Full Text] [Related]

  • 9. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 10; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 10. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 10; 49():776-785. PubMed ID: 25687008
    [Abstract] [Full Text] [Related]

  • 11. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro.
    Gauthaman K, Venugopal JR, Yee FC, Biswas A, Ramakrishna S, Bongso A.
    Tissue Eng Part A; 2011 Jan 10; 17(1-2):71-81. PubMed ID: 20673136
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S.
    Biomaterials; 2012 Jan 10; 33(3):846-55. PubMed ID: 22048006
    [Abstract] [Full Text] [Related]

  • 14. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds.
    Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG.
    J Biomed Mater Res A; 2013 Jun 10; 101(6):1620-8. PubMed ID: 23184542
    [Abstract] [Full Text] [Related]

  • 15. Enhancement of stem cell differentiation to osteogenic lineage on hydroxyapatite-coated hybrid PLGA/gelatin nanofiber scaffolds.
    Sanaei-Rad P, Jafarzadeh Kashi TS, Seyedjafari E, Soleimani M.
    Biologicals; 2016 Nov 10; 44(6):511-516. PubMed ID: 27720267
    [Abstract] [Full Text] [Related]

  • 16. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM, Moghe AK, Osborne JA, Gupta BS, Loboa EG.
    J Biomater Sci Polym Ed; 2011 Nov 10; 22(13):1695-712. PubMed ID: 20836922
    [Abstract] [Full Text] [Related]

  • 17. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV.
    Tissue Eng Part A; 2010 Feb 10; 16(2):393-404. PubMed ID: 19772455
    [Abstract] [Full Text] [Related]

  • 18. Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers over hydroxyapatite: a comparative study.
    Jaiswal AK, Chhabra H, Kadam SS, Londhe K, Soni VP, Bellare JR.
    Mater Sci Eng C Mater Biol Appl; 2013 Jul 01; 33(5):2926-36. PubMed ID: 23623116
    [Abstract] [Full Text] [Related]

  • 19. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S, Prabhakaran MP, Qin X, Ramakrishna S.
    J Biomater Appl; 2015 May 01; 29(10):1394-406. PubMed ID: 25592285
    [Abstract] [Full Text] [Related]

  • 20. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H, Lim DJ, Lee SH, Park H.
    J Biomed Nanotechnol; 2016 Nov 01; 12(11):2076-82. PubMed ID: 29364624
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.